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Abstract Closed quantum systems that do not interact with the surrounding are
described by an eigenvalue equation such as the Schrödinger equation. In particu-
lar, one can describe in this way a finite closed quantum system S a

ρ that contains ρ

eigenvalues and ρ eigenstates. Open quantum systems that interact with surrounding
are usually treated within a perturbation expansion method. In a consistent quantum
approach this “surrounding” should be treated as another (usually infinite) quantum
system S b

∞. In formal mathematical terms one has to find a solution of the combined
system S∞ ≡ S a

ρ ⊕ S b
∞ with emphasize on the properties of the subsystem S a

ρ .
A new approach for the solution of this problem is presented. One finds that combined
system S∞ contains embedded eigenstates |�(ε, . . .)〉 with continuous eigenvalues
ε, and in addition it may contain isolated eigenstates |�r 〉 with discrete eigenvalues
εr . Two ρ × ρ eigenvalue equations, a generic eigenvalue equation and a fractional
shift eigenvalue equation are derived. In almost all cases those two equations produce
a complete and exact description of the open quantum system S a

ρ . The extremely rare
exceptional cases can be also treated accordingly. The suggested method produces
correct results, however strong the interaction between quantum systems S a

ρ and S b
∞.

Two examples are presented in order to illustrate various aspects of this method.

Keywords Interaction of quantum systems · Time-independent perturbation ·
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1 Introduction

Consider a finite quantum system S a
ρ that contains ρ discrete eigenvalues and ρ eigen-

states. If this system is closed, it can be described by an eigenvalue equation. However,
more interesting is the case when this system is open and when it interacts with its
surrounding. In a consistent quantum approach this surrounding should be considered
as another (usually infinite) quantum system S b

∞. In general, system S b
∞ can contain

several eigenvalue bands and/or several isolated eigenstates. In analogy with standard
perturbation expansion approach [1,2], one can assume that the solution to the system
S b

∞ is known. The problem is to find properties of a system S a
ρ that interacts with the

known system S b
∞. In formal mathematical terms the system S a

ρ and its surrounding

(system S b
∞) form a combined system S∞ ≡ S a

ρ ⊕ S b
∞. Thus one has to extract the

required information from the solution of this combined system.
There are numerous problems in physics and chemistry of this type. For example,

consider the interaction of an isolated molecule with the electromagnetic field [1,2].
This molecule can be approximated with a system S a

ρ containing finite number of
eigenvalues Es and eigenstates |�s〉. Those eigenstates interact with one-photon states
|�p, k� 〉 where |k� 〉 represents a state containing one-photon with momentum k and
polarization � . States |�p, k� 〉 interact with two-photon states |�r , k′� ′, k′′� ′′〉,
which in turn interact with three-photon states, etc. [1]. If there is no external elec-
tromagnetic field, one can to a very good approximation ignore all states containing
multiple photons, and one can associate system S b

∞ with the set of all one-photon states
|�p, k� 〉 with corresponding eigenvalues. The solution to this system is known since
the states |k� 〉 are essentially plane waves, while |�p〉 are eigenstates of the iso-
lated molecule. Hence one has formally the interaction of a finite system S a

ρ with

the known infinite system S b
∞. With an appropriate modification, in the similar way

can be treated the case when an external electromagnetic field is present. As another
example, consider the interaction of the molecule situated on the surface of some
solid with this solid. Molecule in isolation can be again approximated with a finite
quantum system S a

ρ . System S b
∞ represents a solid with a surface. The solution to

this system usually consists of multiple eigenvalue bands λν(k) with the correspond-
ing eigenstates |�ν(k, l)〉 (ν = 1, 2, . . .) [3]. In addition, system S b

∞ may contain
some discrete eigenvalues λi corresponding to the surface states [4]. One is mainly
interested in the properties of the molecule (system S a

ρ ) subject to the interaction with

a solid (system S b
∞). Again one can assume that the solution to the system S b

∞ is
known. In most cases one knows only an approximate solution of this system [3].
Nevertheless, if this approximate solution is reliable, the problem is to find equally
reliable solution of the combined system S∞ with emphasize on the properties of the
subsystem S a

ρ .
Those and similar problems are usually treated either within the formalism of

the perturbation expansion method, or using some approximate semi-classical model
[1–4]. Both approaches have some drawbacks. If the interaction between the systems
S a

ρ and S b
∞ is strong, perturbation expansion may diverge and the entire method fails.

Concerning various semi-classical models, those models are only approximate and
they can never completely replace exact quantum treatment.
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A new method for the solution of such problems will be presented [5–8]. This
method produces exact description of a quantum system S a

ρ that interacts with a quan-

tum system S b
∞, however strong the interaction between those two systems. There is

no power series expansion and no divergence problem. This method was initially
developed for the case of the interaction of a quantum system S a

1 that contains only
one eigenstate with a quantum system S b

∞ that contains a single one-parameter eigen-
value band [5]. Next the method was generalized to arbitrary quantum systems S b

∞,
retaining still the condition that the system S a

1 contains only one eigenstate [6,7].
Finally the method was generalized to the interaction of an arbitrary finite system S a

ρ

that interacts with an infinite system S b
∞, but with a restriction that S b

∞ contains a
single one-parameter eigenvalue band [8].

In the present paper the most general case of the interaction of an arbitrary finite
quantum system S a

ρ with an arbitrary infinite quantum system S b
∞ will be consid-

ered. Time-independent version of this method will be presented. Generalization to
the time-dependent case is rather straightforward and it can be done along the lines
described elsewhere [5–7].

2 Mathematical formulation of a problem

The system S a
ρ is an arbitrary ρ-dimensional quantum system. With this system is

associated ρ-dimensional space Xa
ρ and it is described by the generalized eigenvalue

equation

A |�s〉 = EsSa |�s〉 , s = 1, . . . , ρ, (1a)

where A and Sa are Hermitian operators in Xa
ρ , while Sa is in addition positive definite

in this space. This guaranties reality of the eigenvalues Es . Eigenstates |�s〉 can be
orthonormalized according to

〈
�s

∣∣Sa
∣∣�p

〉 = δs,p, (1b)

Since |�s〉 form a complete set in Xa
ρ , this implies

ρ∑

s

|�s〉 〈�s | Sa = Ia . (1c)

where Ia is a unit operator in Xa
ρ . Eigenstates |�s〉 of a system S a

ρ are called local
states [8].

The system S b
∞ is an arbitrary infinite-dimensional quantum system. This system

describes any possible surrounding of the system S a
ρ . With this system is associated

an infinite-dimensional space Xb∞. In general, this system may contain several eigen-
value bands and/or several discrete eigenstates. Each of those eigenvalue bands may
be one-parameter eigenvalue band (nondegenerate eigenvalue band) or it may be a
many-parameter eigenvalue band (degenerate eigenvalue band).
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Let the system S b
∞ contain κ eigenvalue bands where κ can assume any value from

κ = 1 to including κ = ∞ (by assumption, the case κ = 0 is excluded. See Appendix
A). Those eigenvalue bands are described by the eigenvalue equation

B
∣∣�ν,m(k, l)

〉 = λν(k)
∣∣�ν,m(k, l)

〉
, k ∈ [kaν, kbν] , ν = 1, 2, . . . , κ, (2a)

where B is a Hermitian operator, where index ν labels various eigenvalue bands, and
where eachλν(k) is a monotonic function of a parameter k in the interval [kaν, kbν](ν =
1, . . . , κ). Parameters l and m are optional. Those parameters label possible degen-
eracy’s inside eigenvalue band ν. Parameter l represents one or several continuous
parameters and parameter m represents one or several discrete parameters. With this
convention eigenstates |�ν,m(k, l)〉 of B can be orthonormalized according to

〈
�ν,m(k, l)|�ν′,m′(k′, l ′)

〉 = δν,ν′δm,m′δ(k − k′)δ(l − l ′). (2b)

Without loss of generality one can assume that each function λν(k) is monotonic
increasing. In this case all eigenvalues of the eigenvalue band ν are confined to the
eigenvalue interval Iν = [aν, bν] where aν = λν(kaν) and bν = λν(kbν) are the small-
est and the largest possible eigenvalue, respectively. One may have bν = ∞. However,
one may not have aν = −∞, since eigenvalues of S b

∞ can not assume arbitrary large
negative values.

Since each λν(k) is monotonic, it has well defined inverse

ε = λν(k), k = λ−1
ν (ε), ε ∈ [aν, bν] . (2c)

Union of all eigenvalue intervals Iν = [aν, bν] forms a range D of the continuous
eigenvalues of S b

∞, D = ∪ν Iν . This range may consist of one or several disconnected
intervals Dµ, where each Dµ is a union of one or several eigenvalue intervals Iν .
It is convenient to define a point set D which is a complement of D. Accordingly,
D ∪ D = R is the entire real axis.

In addition to continuous eigenvalues λν(k) and corresponding eigenstates |�ν,m

(k, l)〉, system S b
∞ may contain τ discrete eigenvalues λi and τ corresponding eigen-

states |�i 〉. In general, τ can assume any value from τ = 0 to including τ = ∞. Those
discrete eigenvalues and eigenstates are described by the eigenvalue equation

B |�i 〉 = λi |�i 〉 , i = 1, 2, . . . , τ, (3a)

Each discrete eigenvalue λi satisfies either λi ∈ D or λi ∈ D. Corresponding
eigenstates |�i 〉 can be orthonormalized according to

〈
�i |� j

〉 = δi, j , i, j = 1, . . . , τ, (3b)

All discrete eigenstates |�i 〉 are also orthogonal to all continuous eigenstates
|�ν,m(k, l)〉

〈
�i |�ν,m(k, l)

〉 = 0. (3c)
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Eigenstates |�i 〉 and |�ν,m(k, l)〉 of S b
∞ form a complete set in the space Xb∞.

Hence those eigenstates satisfy completeness relation

∑

ν

∑

m

∫ ∣∣�ν,m(k, l)
〉 〈

�ν,m(k, l)
∣∣ dk dl +

∑

i

|�i 〉 〈�i | = Ib. (4)

where Ib is a unit operator in the space Xb∞.
Above expressions describe an arbitrary quantum system S b

∞. Each surrounding of
a system S a

ρ , however complicated, can be described as such a system.

Relations (1a), (2a) and (3a) describe closed systems S a
ρ and S b

∞ without mutual
interaction. An arbitrary interaction between those two systems can be written in the
form βV where V 	= 0 is a Hermitian operator and where β ≥ 0 is a coupling parame-
ter. Without loss of generality one can assume that operator V has nonvanishing matrix
elements only between spaces Xa

ρ and Xb∞. Combined system S∞ ≡ S a
ρ ⊕ S b

∞ that
includes this interaction is described by the generalized eigenvalue equation

C |�〉 = ε S |�〉 , (5a)

where

C = A + B + βV, S = Sa + Ib. (5b)

Since Sa is positive definite in Xa
ρ , operator S is positive definite in the combined

space X∞ ≡ Xa
ρ ⊕ Xb∞. Eigenvalues ε of (5a) are hence real.

Mathematically, eigenvalue equation (5a) represents an infinite-dimensional eigen-
value problem. The emphasize in the solution of this problem is on the properties of
the open system S a

ρ that interacts with the infinite system S b
∞, and not on the prop-

erties of the system S b
∞. Such problems are usually treated within the formalism of

the perturbation expansion approach where S a
ρ is the unperturbed system [1,2]. I will

present here a new approach which is not perturbative and which produces an exact
solution to this problem, however strong the interaction between systems S a

ρ and S b
∞.

In the above formulation the system S a
ρ was described with a generalized eigen-

value equation (1a). However, by far the most important is the case when Sa ≡ Ia

is a unit operator in the space Xa
ρ . In the suggested approach there is no substantial

difference between the cases Sa 	= Ia and Sa ≡ Ia . Expressions describing the case
Sa 	= Ia are only slightly more complicated from the expressions describing the case
Sa ≡ Ia . For the sake of generality, the system S a

ρ is therefore described with a

generalized eigenvalue equation (1a). Concerning the infinite system S b
∞, analogous

generalization is not so important. This system may represent an electromagnetic field,
electronic or vibrational (phonon) states of a solid state, etc. In almost all models such
systems are described by base states that are orthonormalized in a standard way [1–3].

Concerning assumption that the system S b
∞ contains at least one eigenvalue band

(κ 	= 0), the case κ = 0 is considered elsewhere [9] (see also Appendix A).
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3 Solutions of the combined system S∞ and description of the open system S a
ρ

A general strategy in the solution of the eigenvalue equation (5a) is to approximate
infinite system S b

∞ with a huge but finite system S b
n containing n eigenvalues λi and n

corresponding eigenstates. Infinite combined system S∞ = S a
ρ ⊕ S b

∞ is accordingly

approximated with a finite (n + ρ)-dimensional combined system Sn+ρ = S a
ρ ⊕ S b

n
that has (n + ρ) eigenvalues εk and (n + ρ) corresponding eigenstates. There are
two kinds of solutions to this finite combined system. If εk differs from all the eigen-
values λi of the closed system S b

n (εk /∈ {λ j }) the corresponding solution is cardinal,
otherwise it is singular [9]. As shown in Appendix A, there are explicit expressions
for cardinal and singular solutions of such finite systems [9]. Given those expressions,
one can derive their n → ∞ limit. Provided the approximation of S∞ with finite
systems Sn+ρ is done in an appropriate way, this limit is well defined [5–8]. One thus
derives the required expressions for the infinite combined system S∞.

As emphasized in a previous section, closed system S b
∞ may contain discrete eigen-

values λi ∈ {λ j } as well as continuous eigenvalues λν(k) ∈ D. Combined system S∞
may also contain discrete end continuous eigenvalues. By definition, each discrete
eigenvalue εr of S∞ is an isolated eigenvalue while each continuous eigenvalue ε of
S∞ is an embedded eigenvalue [8].

Eigenstates |�r 〉 corresponding to isolated eigenvalues εr can be normalized to
unity. This normalization is done in accord with the metrics induced by the operator
S. In particular one has [8,9]

〈
�r |S| �p

〉 = δr,p. (6)

One can consider each isolated eigenvalue εr of S∞ as a continuous function of the
coupling parameter β, εr ≡ εr (β). From this point of view eigenvalue εr may result as
perturbed eigenvalue Es of the local system S a

ρ , in which case one has εr (0) = Es . It

may also result as a perturbed discrete eigenvalues λi of the system S b
∞, in which case

one has εr (0) = λi . However, if the coupling β is strong enough combined system
S∞ may contain some additional isolated eigenvalues εr (β) that do not result in either
of those two ways [5–8].

One can generalize the notion of cardinal and singular solutions defined for finite
combined systems Sn+ρ to all isolated as well as to all embedded solutions of the infi-
nite combined system S∞. Each isolated eigenvalue εr of S∞ is cardinal if it differs
from all discrete eigenvalues λi of the system S∞ (εr /∈ {λ j }). Otherwise it is singu-
lar. This is a natural generalization of the notion of cardinal and singular eigenvalues
from the case of finite combined system to isolated eigenvalues of infinite combined
system.

Concerning embedded solutions, one finds that each ε ∈ D is an embedded eigen-
value of the combined system S∞ [5–8]. This eigenvalue is a part of a continuous band
of eigenvalues, and the corresponding embedded eigenstates are with respect to this
eigenvalue normalized to a δ-function. Those eigenstates are hence of a general type
|�(ε, . . .)〉 where dots (. . .) denote additional discrete and/or continuous parameters,
if any.

123



J Math Chem (2009) 45:627–701 633

A key quantity in the treatment of embedded solutions is a fractional shift x(ε)

[5–8]. In general, with each embedded eigenstate |�(ε, . . .)〉 is associated a fractional
shift x(ε). Fractional shift has the following interpretation: Imagine infinite system
S b

∞ approximated with a huge but finite system S b
n containing n eigenvalues λi . The

corresponding combined system S∞ is accordingly approximated with a huge but
finite system Sn+ρ = S a

ρ ⊕ S b
n containing n + ρ eigenvalues εk . Consider quantities

x(εk) = εk − λk−1

λk − λk−1
, (7)

where εk are eigenvalues of the combined system Sn+ρ while λk−1 are eigenvalues
of the system S b

n . In order to have a meaningful n → ∞ limit of the above expres-
sion, all three eigenvalues εk, λk and λk−1 should be contained in the range D and
in addition they should be contained in the same interval Dµ ⊆ D. Each x(εk) is a
fractional shift of the perturbed eigenvalue εk relative to the unperturbed eigenvalue
λk−1 [5–8]. Fractional shift is thus defined as the ratio of two infinitesimal quantities:
There is an infinitesimal shift εk = εk −λk−1 of the perturbed eigenvalue εk relative
to the corresponding unperturbed eigenvalue λk−1. Another infinitesimal quantity is
the interval λk = λk −λk−1 between two adjacent unperturbed eigenvalues λk ∈ D.
If the infinite system S∞ is approximated with finite systems Sn+ρ in an appropriate
way [5–8] , in a limit n → ∞ discrete quantities x(εk) converge to one or several
functions x(ε) of a continuous parameter ε ∈ D (see Appendix B.2). Each of those
functions is well defined everywhere in the range D, with a possible exception of few
isolated points. One finds that fractional shift can be confined to the interval [0, 1) (see
Sect. 6.2). Fractional shift confined to this interval is a principal value of a fractional
shift [8]. In this paper it will be assumed that fractional shift is confined to its principal
value, i.e. x(ε) ∈ [0, 1).

In view of the above picture of the combined system S∞ as the n → ∞ limit
of finite combined systems Sn+ρ , one can give a following physical interpretation to
the notion of a fractional shift: Fractional shift x(ε) = 0 corresponds to the perturbed
eigenvalue ε that coincides with some unperturbed eigenvalue λ, while fractional shift
x(ε) 	= 0 corresponds to the perturbed eigenvalue ε that does not coincide with any
of the unperturbed eigenvalues λ [5–8]. Accordingly, each embedded solution that
satisfies x(ε) = 0 is singular while each embedded solution that satisfies x(ε) 	= 0
is cardinal. This is a natural generalization of the notion of singular and cardinal
solutions of the finite combined system Sn+ρ to embedded solutions of the infinite
combined system S∞.

In addition to embedded singular solutions which are characterized by fractional
shift x(ε) = 0, a special role is also played by embedded cardinal solutions with frac-
tional shift x(ε) = 0.5. This fractional shift corresponds to the perturbed eigenvalue
ε that is exactly in a middle between two adjacent infinitesimally close unperturbed
eigenvalues λ. Each solution that satisfies x(ε) = 0.5 is called a resonant solution
and the corresponding point ε ∈ D a resonant point. This name is due to the resonant
shape of the corresponding embedded cardinal eigenstates in the case of the weak
coupling (see Sect. 6.2.3.).
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3.1 Description of the open system S a
ρ

Each isolated as well as each embedded eigenstate of the combined system can be
written as a linear combination

∣∣�
〉 = ∣∣�a 〉 + ∣∣�b〉, (8a)

where |�a〉 ∈ Xa
ρ and |�b〉 ∈ Xb∞ are components of this eigenstate in spaces Xa

ρ and
Xb∞, respectively. Let O be an observable (linear Hermitian operator) that describes
some property of the open system S a

ρ and let |�〉 and |� ′〉 be eigenstates of the com-
bined system S∞. Operator O can have nonvanishing matrix elements only between
the states contained in the space Xa

ρ . This implies

〈
� |O| � ′〉 = 〈

�a |O| �a′〉 . (8b)

Hence, in order to obtain properties of the open system S a
ρ , it is sufficient to know

Xa
ρ-components of the (properly normalized) eigenstates of the combined system. The

knowledge of Xb∞-components of those eigenstates is not needed.
In the case of a finite combined system Sn+ρ , each cardinal eigenstate has a nonvan-

ishing Xa
ρ-component. Concerning singular eigenstates, one may have two kinds of

such eigenstates: strongly singular eigenstates have no Xa
ρ-component, while weakly

singular eigenstates have nonvanishing Xa
ρ-component. One finds that a finite com-

bined system Sn+ρ only exceptionally can have some weakly singular eigenstates
(see Appendix A). Those properties of cardinal and singular eigenstates in the case
of finite combined system Sn+ρ generalize to cardinal and singular eigenstates of the
infinite combined system S∞. Consider first embedded eigenstates of the combined
system. Each embedded cardinal eigenstate satisfies |�a(ε, . . .)〉 	= 0 while each
embedded strongly singular eigenstate satisfies |�a(ε, . . .)〉 = 0. Concerning embed-
ded weakly singular eigenstates that have nonvanishing Xa

ρ-component, one may have
only a limited number of such eigenstates. However, S∞ contains an infinite number
of embedded cardinal eigenstates (see Sect. 6). The contribution of embedded weakly
singular eigenstates to the properties of the open system Sa

ρ is hence negligible (see
Sect. 6). In conclusion, most important are embedded cardinal eigenstates that have a
nonvanishing Xa

ρ component while embedded singular eigenstates are in that respect
not important. Similar conclusions apply to isolated eigenstates of the combined sys-
tem. Here again isolated cardinal eigenstates are most important. However, unlike
embedded weakly singular eigenstates, isolated weakly singular eigenstates may in
some cases contribute to the properties of the open system S a

ρ (this is however quite
rare, see Sect. 5).

In conclusion, concerning properties of the open system S a
ρ , most important are

Xa
ρ-components of embedded cardinal and isolated cardinal eigenstates of the com-

bined system. One finds that those components are described by two key eigenvalue
equations. Those are generic eigenvalue equation and fractional shift eigenvalue equa-
tion. Both equations act in the space Xa

ρ and they can be both represented as ρ × ρ

matrix eigenvalue equation. In addition to operators A and Sa that according to (1a)
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describe closed system S a
ρ , those eigenvalue equations involve characteristic opera-

tor f(ε) and derived operator ω(ε) [8]. Characteristic operator incorporates essential
features of the infinite system S b

∞ and of the interaction of this system with the finite
system S a

ρ . This operator is basic. Derived operator ω(ε) is uniquely determined by
the corresponding characteristic operator f(ε).

4 Characteristic and derived operators

Key role in the expressions that replace eigenvalue equation (5a) is played by char-
acteristic operator f(ε). This operator acts in the space Xa

ρ and in this space it is
represented by a ρ × ρ Hermitian matrix. Characteristic operator f(ε) is a sum of
characteristic operators fν(ε) that are associated with eigenvalue bands ν and of the
characteristic operator F(ε) that is associated with the set {λ j } of all discrete eigen-
values λi of the system S b

∞

f(ε) =
∑

ν

fν(ε) + F(ε), (9a)

Operator fν(ε) associated with the eigenvalue band ν vanishes for each ε /∈ Iν and
in the interval Iν it is positive definite with possible exception of few isolated points
where it may be zero. In the base {|s〉} ∈ Xa

ρ matrix elements f (ν)
sp (ε) of this operator

are (see Appendix B):

f (ν)
sp (ε) ≡ 〈s|fν(ε)|p〉

=
∑

m

∫ 〈
s|V|�ν,m(k, l)

〉 〈
�ν,m(k, l) |V|p

〉
dl

dλν(k)/dk

∣∣∣∣∣∣
k=λ−1

ν (ε)

·
{

1 i f ε ∈ Iν
0 i f ε /∈ Iν

ν = 1, . . . , κ, s, p = 1, . . . , ρ. (9b)

Without loss of generality one can assume that the states |s〉 ∈ Xa
ρ are orthonor-

malized in a standard way: 〈s|p〉 = δs,p.

Each matrix element f (ν)
sp (ε) is usually an analytic function of ε inside the interval

Iν . However, it is not analytic for each ε, since outside this interval f (ν)
sp (ε) is identi-

cally zero. Since f (ν)(ε) is positive definite almost everywhere inside the interval Iν
and zero outside this interval, each eigenvalue ξi (ε) (i = 1, . . . , ρ) of this operator is
nonnegative inside Iν and zero outside Iν . In particular, if ν is one-parameter eigen-
value band, operator f (ν)(ε) has rank [10] one for each ε ∈ Iν with a possible exception
of few isolated points where this rank vanishes [8]. In this case each eigenvalue ξi (ε)

is identically zero (ξi (ε) = 0 for each ε) except for only one eigenvalue (say ξ1(ε))
which is positive for each ε ∈ Iν , except for few isolated points ε = εc ∈ Iν (if any)
where it is zero [8].

Operator F(ε) associated with the set {λ j } vanishes for each ε /∈ {λ j } and it is a
δ-type operator in the points ε ∈ {λ j }. This operator is also positive definite, and in
the base {|s〉} matrix elements Fsp(ε) of this operator are
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Fsp(ε) ≡ 〈s |F(ε)| p〉 =
∑

i

〈s |V| �i 〉 〈�i |V| p〉 δ(ε − λi ), s, p = 1, . . . , ρ. (9c)

Matrix elements (9b) and (9c) determine characteristic operators fν(ε) and F(ε),
respectively. According to those expressions, in order to derive those operators one has
to know the solution of the unperturbed system S b

∞. The knowledge of the solution to
this system is a standard assumption in a perturbation expansion approach [1,2]. Once
this solution is known, construction of operators fν(ε) and F(ε) is straightforward and
computationally simple.

Characteristic operators fν(ε) and F(ε) determine derived operators ων(ε) and
�(ε), respectively. Unlike operator fν(ε) that vanishes outside the interval Iν , the cor-
responding derived operator ων(ε) is nonzero in all points outside Iν and in almost
all points inside Iν . This operator is expressed in terms of the characteristic operator
fν(ε) according to

ων(ε) = P
∫

fν(λ)

ε − λ
dλ, (10a)

where P denotes principal Cauchy integral value [11]. In particular

ω(ν)
sp (ε) ≡ 〈s|ων(ε)|p〉 = P

∫
f (ν)
sp (λ)

ε − λ
dλ, s, p = 1, . . . , ρ. (10b)

If ε /∈ Iν above expressions are standard integrals. However, if ε ∈ Iν sub-integral
function on the right-hand side of those expressions may diverge in a point λ = ε.
In this case one has to take a principal Cauchy integral value of those expressions.
If f (ν)

sp (ε) is polynomial in the interval Iν , there is a closed expression for the corre-

sponding matrix element ω
(ν)
sp (ε) of the derived matrix ων(ε) [7]. More generally, if

f (ν)
sp (ε) is an analytic function in this interval, matrix element ω

(ν)
sp (ε) can be usually

expressed in a closed form as an infinite sum. As shown in the Appendix D, if q(λ) is
analytic and if a and b are finite (a 	= −∞ and b 	= ∞) one has

P
∫ b

a

q(λ)

ε − λ
dλ = q(ε) ln

∣∣∣∣
a − ε

b − ε

∣∣∣∣ − g(ε), (11a)

where the function g(ε) equals

g(ε) =
∞∑

i=1

q(i)(ε)

i !i
[
(b − ε)i − (a − ε)i

]
. (11b)

and where ε can assume any real value. In the above expression q(i)(ε) is i th derivative
of the function q(ε). If q(ε) is polynomial, g(ε) is also polynomial. More generally, if
q(ε) is an analytic function with the only singularity in infinity, infinite sum in (11b) is
guaranteed to converge for each finite ε. Function g(ε) defined with this sum is hence
also an analytic function with the only singularity in infinity.
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In analogy to (10a), derived operator �(ε) is expressed in terms of the characteristic
operator F(ε) according to

�(ε) = P
∫

F(λ)

ε − λ
dλ, (12a)

Hence and from (9c)

�sp(ε) ≡ 〈s|�(ε)|p〉 =
∑

i(λi 	=ε)

〈s|V|�i 〉 〈�i |V|p〉
ε − λi

, s, p = 1, . . . , ρ. (12b)

Note that matrix element �sp(ε) is finite for each real ε. However, in a point ε =
λi ∈ {λ j } this matrix element is usually not continuous and (unless 〈s|V|�i 〉〈�i |V|p〉
= 0) one has lim

ε→λi
�sp(ε) = ±∞.

In analogy to (9a), derived operators ων(ε) and �(ε) combine to a global derived
operator ω(ε) according to

ω(ε) =
∑

ν

ων(ε) + �(ε), (13a)

Matrix elements ωsp(ε) of ω(ε) are hence

ωsp(ε) ≡ 〈s |ω(ε)| p〉 = P
∫

fsp(λ)

ε − λ
dλ, s, p = 1, . . . , ρ. (13b)

If the range D and the set {λ j } are bounded, above expression implies that each
state |�〉 ∈ Xa

ρ satisfies

〈� |ω(±∞)| �〉 = 0, (14a)

One finds that this is true also if the range D and/or the set {λ j } is not bounded,
provided in the limit λ → ∞ matrix elements fsp(λ) satisfy some mild conditions.
Further, since f(λ) is nonnegative, for each ε /∈ D and ε /∈ {λ j } an arbitrary state
|�〉 ∈ Xa

ρ satisfies 〈�|dω/dε|�〉 ≤ 0. This holds also if ε = ε0 ∈ D, provided the
state |�〉 satisfies f(ε0)|�〉 = 0. Since f(ε)|�〉 = 0 whenever ε /∈ D, this can be
concisely written as

〈� |dω/dε| �〉 ≤ 0, if f(ε) |�〉 = 0 and ε /∈ {λ j }. (14b)

Note that if ε ∈ D and f(ε)|�〉 	= 0, one may have 〈�|dω/dε|�〉 ≤ 0 as well
as 〈�|dω/dε|�〉 > 0. The condition f(ε)|�〉 = 0 is hence essential. Concerning the
condition ε /∈ {λ j }, in the point ε ∈ {λ j } the derivative dω/dε is not well defined.

According to the expression (1a), operators A and Sa contain all information nec-
essary for the description of the closed system S a

ρ . Characteristic operator f(ε) con-
tains all additional information necessary for the description of the open system S a

ρ .
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In order to construct this operator, it is not necessary to specify all the details of the
infinite system S b

∞ and all the details of the interaction of this system with the finite
system S a

ρ . All what is needed is the knowledge of ρ · (ρ + 1)/2 functions (or more

precisely distributions [1]) fsp(ε) (s ≤ p). There are many different systems S b
∞ that

may produce the same functions fsp(ε). If the details of the system S b
∞ and of the

interaction of this system with the system S a
ρ are not known, one can model those

functions in such a way as to satisfy some required properties and/or some known data
of the combined system.

5 Isolated solutions of the combined system S∞

As emphasized in Sect. 3, isolated eigenvalues of the combined system may be cardi-
nal as well as singular. By definition, isolated eigenvalue εr of the combined system is
cardinal if it differs from all discrete eigenvalues of the closed system S b

∞, εr /∈ {λ j }.
Otherwise it is singular. Isolated cardinal eigenvalues and the corresponding eigen-
states of the combined system can be obtained as a solution of the generic eigenvalue
equation

[
β2ω(εr ) + A

]
|θr 〉 = εr Sa |θr 〉 , εr /∈ {λ j }, (15a)

If there is no interaction (β = 0) this equation reduces to the eigenvalue equation
(1a) that describes closed system S a

ρ .
For simplicity and unless required in order to avoid possible ambiguity, in the above

and in the following expressions explicit dependence on the parameter β will not be
written. Since eigenvalue εr and eigenstate |θr 〉 depend on this parameter, in an explicit
full notation one should write εr ≡ εr (β) and |θr 〉 ≡ |θr (β)〉.

Expression (15a) is a nonlinear eigenvalue equation. It may have eigenvalues εr ∈
D as well as eigenvalues εr ∈ D. As shown in the Appendix B.1, each eigenvalue
εr ∈ D of this equation is an isolated eigenvalue of the combined system. Correspond-
ing eigenstate |θr 〉 ∈ Xa

ρ determines Xa
ρ-component |�a

r 〉 of the isolated eigenstate
|�r 〉 according to

∣∣�a
r

〉 = 1√
Qr

|θr 〉, (15b)

where

Qr = 〈
θr

∣∣Sa
∣∣ θr

〉 − β2 〈θr |dω/dεr | θr 〉. (15c)

Concerning eigenvalues εr ∈ D of (15a), those eigenvalues are resonant points
[8] and they are related to the embedded solutions of the combined system [8] (see
Sect. 6.2.3.). In a special case when in a point ε = εr there is an eigenstate |θr 〉 of
(15a) that in addition to (15a) satisfies

f(εr ) |θr 〉 = 0, (16)
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this point is an anomal point. One finds that in each anomal point combined system
has an isolated solution. Eigenvalue of this isolated solution is eigenvalue εr of the
generic eigenvalue equation (15a). In addition, component |�a

r 〉 of the corresponding
isolated eigenstate |�r 〉 is again given by expressions (15b,c) where |θr 〉 satisfies (15a)
and (16).

In conclusion, eigenvalues and eigenstates of the generic eigenvalue equation
determine all cardinal isolated eigenvalues εr /∈ {λ j } of the combined system and
all Xa

ρ-components of the corresponding eigenstates |�r 〉. If εr ∈ D this solution is
determined by the generic eigenvalue equation (15a). However, if εr ∈ D the corre-
sponding eigenstate |θr 〉 should satisfy additional condition (16).

Consider now eigenvalue εr of the generic eigenvalue equation as a function of a
coupling parameter β. As shown in the Appendix E, the rate of change of the eigenvalue
εr ≡ εr (β) as β increases is

∂εr

∂β
= 2β 〈θr |ω(εr )| θr 〉

〈θr |Sa | θr 〉 − β2 〈θr |dω/dεr | θr 〉 , εr /∈ {λ j }. (17)

If εr ∈ D expression (14b) implies 〈θr |dω/dεr |θr 〉 ≤ 0. Since 〈θr |Sa |θr 〉 > 0, the
sign of the derivative (∂εr/∂β) equals the sign of the matrix element 〈θr |ω(εr )|θr 〉.
Hence for each εr ∈ D and εr /∈ {λ j } eigenvalue εr = εr (β), considered as a function
of a parameter β, increases (decreases) if matrix element 〈θr |ω(εr )|θr 〉 is positive (neg-
ative). Let λ1 ∈ {λ j } be the smallest isolated eigenvalue of S b

∞ and let a1 = λ1(ka1)

be the smallest left edge of all intervals Iν ⊆ D. Consider extreme left subinterval
Īle f t = (−∞, min(λ1, a1)) of D. Due to (14) one has 〈θr |ω(εr )|θr 〉 ≤ 0 if εr ∈ Īle f t .
In a similar way one finds 〈θr |ω(εr )|θr 〉 ≥ 0 if εr ∈ Īr ight where Īr ight is analogous
extreme right subinterval of D (provided this right subinterval exist, i.e. provided
D as well as {λ j } is bounded from above). Accordingly, in the subinterval Īle f t of
D eigenvalue εr (β) is a decreasing function of β, while in the subinterval Īr ight of D
it is an increasing function of β. Thus the effect of the coupling β is to repeal each
isolated eigenvalue εr (β) (that is sufficiently far from the range D) away from this
range.

Expressions (15) and (16) describe isolated cardinal solutions of the combined
system (with eigenvalues εr /∈ {λ j }). One can derive similar expressions for isolated
singular solutions that satisfy εr ∈ {λ j }. Those expressions can be derived from expres-
sions (A8) in the same way as expression (15a) is derived from the expression (A5a).
However, isolated singular solutions are usually not important. First, there are many
systems S b

∞ that have no discrete eigenvalue λi . If this is the case, the corresponding
combined system S∞ has no isolated singular solution (though it may have and usually
has isolated cardinal solutions). For example, a free electromagnetic field is such a
system which has no discrete eigenvalue. Second, unless some special conditions are
met, combined system S∞ can have isolated singular eigenvalue εr = λi only if the
degeneracy of discrete unperturbed eigenvalue λi ∈ {λ j } exceeds dimension ρ of the
space Xa

ρ . Further, since singular eigenvalue εr equals some unperturbed eigenvalue
λi . It is much easier to find singular eigenvalues (and corresponding eigenstates) than
to find cardinal eigenvalues which can assume any value εr /∈ {λi }. Finally, even
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when the system S∞ contains some isolated singular eigenvalue εr ∈ {λi }, the cor-
responding eigenstate |�r 〉 is usually strongly singular with no Xa

ρ-component. Such
eigenstates do not contribute to the properties of the open system S a

ρ . Nonvanishing
Xa

ρ-components have only isolated weakly singular eigenstates which are usually quite
rare (see Appendix A and B.1).

5.1 Probabilities associated with isolated eigenstates

Once |�a
r 〉 ∈ Xa

ρ is known, one can find all related properties of the open system S a
ρ .

For example, probability amplitude to find isolated eigenstate |�r 〉 in the local state
|�s〉 equals 〈�s |S|�r 〉 [8]. Hence and according to (15b,c), probability wr,s to find
isolated eigenstate |�r 〉 in the local state |�s〉 equals

wr,s ≡ |〈�s |S| �r 〉|2 = 〈θr |Sa | �s〉 〈�s |Sa | θr 〉
〈θr |Sa | θr 〉 − β2 〈θr |dω/dεr | θr 〉 . (18a)

Since {|�s〉} is a complete orthonormalized set in Xa
ρ , probability wr to find isolated

eigenstate |�r 〉 in a local system S a
ρ equals a sum

∑
s wr,s . Hence and due to (1c)

wr ≡
∑

s

wr,s = 〈θr |Sa | θr 〉
〈θr |Sa | θr 〉 − β2 〈θr |dω/dεr | θr 〉 . (18b)

According to (15b,c), this probability equals norm of the Xa
ρ -component of the isolated

eigenstate |�r 〉

wr = 〈
�a

r

∣∣Sa
∣∣�a

r

〉
. (18c)

Obviously wr ≤ 1. Probability to find isolated eigenstate |�r 〉 in a system S a
ρ can

never exceed one.

6 Embedded solutions of the combined system S∞

Embedded solutions of the combined system depend on a continuous parameter ε and
they exist for each ε ∈ D, while for ε /∈ D those solutions do not exist. With each
embedded solution is associated a fractional shift x(ε) [5–8] which is defined as the
n → ∞ limit of quantities (7) (see Appendix B.2). As emphasized in Sect. 3, there are
two kinds of embedded solutions: singular solutions that satisfy x(ε) = 0 and cardinal
solutions that satisfy x(ε) 	= 0.

6.1 Embedded singular solutions

Let Xbε be the subspace of the space Xb∞ that contains all band eigenstates of S b
∞

with the eigenvalue ε ∈ D. In other words, this subspace contains all eigenstates
|�ν,m(k, l)〉 that satisfy k = λ−1

ν (ε) and where ν, m and l can assume any admissible
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value. Since ε ∈ D, the space Xbε is nonempty and it contains at least one eigenstate
|�ν,m(k, l)〉. This space may contain a finite as well as an infinite number of such
eigenstates. As shown in the Appendix B.2, Xa

ρ-component and the corresponding
Xbε-component of embedded singular eigenstates with the eigenvalue ε are solutions
of the equations

h(ε) |ϕ(ε, . . .)〉 = −βVPε |φ(ε, . . .)〉 , (19a)

f(ε) |ϕ(ε, . . .)〉 = 0, (19b)

where

h(ε) = β2ω(ε) + A − εSa . (19c)

and where Pε is a projection operator on the subspace Xbε. Since operator h(ε) acts
in the space Xa

ρ while Pε is a projection on Xbε, one has |ϕ(ε, . . .)〉 ∈ Xa
ρ and

|φ(ε, . . .)〉 ∈ Xbε. Above expressions generalize expressions (A8) which produce
all singular solutions of a finite combined system Sn+ρ to the singular embedded
solutions of infinite combined system S∞.

In analogy to a finite system Sn+ρ , infinite system S∞ may contain embedded
strongly singular eigenstates which have no Xa

ρ-component as well as embedded
weakly singular eigenstates which have a nonvanishing Xa

ρ-component. In the case of
embedded strongly singular eigenstates one has |ϕ(ε, . . .)〉 = 0 and expressions (19)
reduce to

VPε |φ(ε, . . .)〉 = 0, (20a)

If |φ(ε, . . .)〉 is a solution of (20a) the corresponding strongly singular eigenstate
of the combined system is

|�(ε, . . .)〉 ≡
∣∣∣�b(ε, . . .)

〉
= 1√〈φ(ε, . . .)|φ(ε, . . .)〉 |φ(ε, . . .)〉 . (20b)

Embedded strongly singular eigenstates are due to the degeneracy of the unper-
turbed eigenvalues λν(k). For example, if the system S b

∞ is described by the eigenvalue
equation

B |�m(k)〉 = λ(k) |�m(k)〉 , k ∈ [ka, kb] , m = 1, 2, . . . , η, (21a)

where m is discrete parameter which can assume η values, each eigenvalue λ(k) is
η-degenerate. In this case Xbε is a η-dimensional space spanned by η unperturbed
eigenstates |�m(k)〉 where k = λ−1(ε). Projection on this space is

Pε =
η∑

m

|�m(k)〉 〈�m(k)| , k = λ−1(ε), (21b)
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and each state |φ(ε, . . .)〉 ∈ Xbε is a linear combination

|φ(ε, . . .)〉 =
η∑

m

cm |�m(k)〉 , k = λ−1(ε), (21c)

where cm are unknown coefficients. In a matrix form expression (20a) reads

η∑

m

cm 〈s |V| �m(k)〉 = 0, s = 1, . . . , ρ, k = λ−1(ε). (21d)

This is a set of ρ homogenous linear equations in η unknowns cm . If η > ρ, for each
ε ∈ [a, b] ≡ [λ(ka), λ(kb)] combined system has at least η − ρ linearly independent
strongly singular eigenstates with the eigenvalue ε. Each such eigenstate is a linear
combination (21c) where coefficients cm satisfy (21d). If η is large, the number of
strongly singular eigenstates can be substantial. For example, if instead of the discrete
parameter m one has a continuous parameter l (see expressions (B11) in the Appen-
dix B.2), then for each ε ∈ [a, b] combined system has a c-infinite number of linearly
independent strongly singular eigenstates with this eigenvalue.

The set of all embedded strongly singular eigenstates with the eigenvalue ε ∈ D
spans passive subspace Xbε− of the space Xbε. According to (20a) this subspace is
a nullspace [10] of the operator VPε. It is the largest linear space, subspace of Xbε,
such that no vector in this space interacts with the space Xa

ρ . Orthogonal complement
of Xbε− in the space Xbε is active subspace Xbε+ of Xbε. Each vector in this space
interacts with the space Xa

ρ . Dimension of active subspace Xbε+ is at most ρ, while
passive subspace Xbε− can have any dimension from zero to including ∞.

In addition to active and passive spaces Xbε+ and Xbε− associated with the par-
ticular eigenvalue ε = λ(k) ∈ D, one can consider global active space Xb+∞ which is
orthogonal sum of all active spaces Xbε+ as well as global passive space Xb− which is
orthogonal sum of all passive spaces Xbε−. In analogy to (A12b) those spaces satisfy
Xb+∞ ⊕ Xb− = Xb∞.

Consider now embedded weakly singular eigenstates. Those eigenstates satisfy
|ϕ(ε, . . .)〉 	= 0 and conditions (19a) and (19b) are nontrivial. One finds that those
eigenstates may exist only for some isolated eigenvalues ε = ε0 ∈ D. In addi-
tion, for each ε0 ∈ D one may have at most ρ such eigenstates (see Appendix A
and B.2). Hence the combined system may contain at most a finite number of such
eigenstates (or in some extreme cases a denumerable (ℵ0) number of such eigenstates).
Since each such eigenstate is orthogonal to all embedded strongly singular eigenstates,
those eigenstates satisfy |φ(ε, . . .)〉 ∈ Xbε0+.

One can have two kinds of embedded weakly singular eigenstates depending on
whether h(ε0)|ϕ(ε0, . . .)〉 	= 0 or h(ε0)|ϕ(ε0, . . .)〉 = 0. One finds that embedded
weakly singular eigenstates which satisfy h(ε0)|ϕ(ε0, . . .)〉 	= 0 do not contribute to
the properties of the open system S a

ρ . This follows from the fact that such eigenstates
may exist only in some isolated points ε0 ∈ D. The set of all such points is of measure
zero (at most ℵ0) and hence all relevant integrals over those eigenstates vanish.
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Another possibility is f(εa)|ϕ(εa, . . .)〉 = 0 and h(εa)|ϕ(εa, . . .)〉 = 0 for some
ε = εa . Those expressions are recognized as relations (15a) and (16) which describe
isolated eigenstates of the combined system (see Sect. 6.2.4). Each point ε = εa where
there is a nontrivial state |ϕ〉 such that h(εa)|ϕ〉 = 0 as well as f(εa)|ϕ〉 = 0 is an
anomal point [8]. One finds that the general method described in the Appendix B.2
breaks down in anomal points, and in such a point the combined system may have one
or several isolated eigenstates [5–8].

To summaries, in the case of embedded singular eigenstates most numerous are
usually embedded strongly singular eigenstates which are given by expressions (20).
Those eigenstates are due to the degeneracy of the corresponding unperturbed eigen-
value and for each ε ∈ D they span the nullspace of VPε. However, those eigenstates
have no component in the space Xa

ρ and hence they do not contribute to the properties
of the open system S a

ρ . On the other hand, embedded weakly singular eigenstates
which do have nonvanishing Xa

ρ-component may exist only for some isolated eigen-
values ε = ε0 ∈ D. There is hence a limited number of such eigenstates. One finds
that to the properties of the open system S a

ρ may contribute only those weakly sin-
gular eigenstates which are anomal. However, those eigenstates are isolated and they
are taken care by corresponding expressions which produce isolated eigenvalues and
eigenstates. In conclusion, embedded singular eigenstates do not contribute to the
properties of the open system S a

ρ .

6.2 Embedded cardinal solutions

Embedded cardinal eigenstates of the combined system have nonvanishing fractional
shift (x(ε) 	= 0) and nonvanishing Xa

ρ component. Those eigenstates contribute to
the properties of the open system S a

ρ and they can be obtained as a solution of the
fractional shift eigenvalue equation [8] (see Appendix B.2).

h(ε) |ϕd(ε)〉 = Xd(ε) f (ε) |ϕd(ε)〉, (22a)

where h(ε) is given by (19c) and where

Xd(ε) = −πβ2 cot(πxd(ε)), ε ∈ D, d = 1, 2, . . . , r(ε), r(ε) ≤ ρ. (22b)

For simplicity, in the above expressions is omitted dependence on the parame-
ter β. On this parameter depend quantities h(ε), |ϕd(ε)〉, Xd(ε) and xd(ε), but not
f(ε). Hence in an explicit full notation one should write h(ε) ≡ h(ε, β), |ϕd(ε)〉 ≡
|ϕd(ε, β)〉, Xd(ε) ≡ Xd(ε, β) and xd(ε) ≡ xd(ε, β).

Eigenvalue equation (22) produces Xa
ρ-components of cardinal eigenstates |�d(ε)〉

as well as the corresponding fractional shifts xd(ε). Index d is used to label multiple
fractional shifts associated with degenerate cardinal eigenstates. Fractional shift xd(ε)

is determined by the eigenvalue Xd(ε) of the fractional shift eigenvalue equation
according to (22b) and it is confined to the interval [1 − ρ, 1] [8].

1 − ρ ≤ xd(ε) ≤ 1. (23)
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Since for each integer m one has cot(π(xd(ε)+m)) = cot(πxd(ε)), expression (22b)
determines fractional shift up to an additive integer constant. No other quantity to be
derived in this paper is sensitive to this constant. Hence one can confine fractional shift
xd(ε) to the interval [0, 1). This is a principal value of a fractional shift. As empha-
sized in Sect. 3, in this paper it will be assumed that the fractional shift is confined to
its principal value.

Fractional shift xd(ε) in conjuncture with the corresponding eigenstate |ϕd(ε)〉
of the fractional shift eigenvalue equation determines Xa

ρ-component |�a
d (ε)〉 of the

embedded eigenstate |�d(ε)〉 according to [8]

∣∣�a
d (ε)

〉 = sin (πxd(ε))

πβ
√〈ϕd(ε) |f(ε)| ϕd(ε)〉 |ϕd(ε)〉, (24a)

Using (22b) one can express sin(πxd(ε)) in terms of the eigenvalue Xd(ε) of the
fractional shift equation. Thus one finds

∣∣�a
d (ε)

〉 = β
√

π2β4 + (Xd(ε))2√〈ϕd(ε) |f(ε)| ϕd(ε)〉
|ϕd(ε)〉. (24b)

Fractional shift eigenvalue equation reduces to the generic eigenvalue equation if
Xd(ε) = 0, i.e. if fractional shift equals xd(ε) = 0.5. In particular, if εr ≡ εr (β)

is an eigenvalue of the generic eigenvalue equation (15a) and if |θr 〉 ≡ |θr (β)〉 is
the corresponding eigenstate, than there is an eigenstate |ϕr (ε)〉 ≡ |ϕr (ε, β)〉 of the
fractional shift eigenvalue equation (22a) such that Xr (εr (β), β) = 0 and (up to the
norm and phase) |θr (β)〉 ≡ |ϕr (εr (β), β)〉. Each solution to (15a) can be hence con-
sidered as a special case of solutions to (22a). Accordingly, one could obtain both,
isolated as well as embedded solutions, using only fractional shift eigenvalue equa-
tion. However, it is more convenient to use both equations in order to have a clear
separation between isolated eigenstates which are solutions of the generic eigenvalue
equation (15a) and embedded eigenstates which are solutions of the fractional shift
eigenvalue equation (22a).

As shown in a previous section, embedded singular eigenstates do not contribute to
the properties of the open system S a

ρ . In addition to this difference between embed-
ded cardinal and embedded singular eigenstates, there is another important difference
between those two types of eigenstates. For each ε ∈ D one may have at most ρ

linearly independent embedded cardinal eigenstates (see next section). Hence those
eigenstates can be labeled with discrete label d as |�d(ε)〉 (as this is done in the
expression (22a)). On the other hand, strongly singular eigenstates may depend on
additional discrete and/or continuous parameters induced by the system S b

∞. Each
embedded strongly singular eigenstate is hence of a general type |�(ε, . . .)〉 where
dots (. . .) represents those additional parameters, if any. In particular, for each eigen-
value ε ∈ D the set of all strongly singular eigenstates spans the nullspace of VPε and
one may have an infinite number of such eigenstates (see Sect. 6.1.). It is fortunate that
those eigenstates are not required for the description of the open system S a

ρ and that
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(as far as properties of this open system are considered) embedded cardinal eigenstates
are sufficient.

6.2.1 Basic properties of the solutions to the fractional shift eigenvalue equation

In a base {|s〉} ∈ Xa
ρ fractional shift equation is a ρ × ρ matrix eigenvalue equation.

Standard ρ × ρ eigenvalue equation involving Hermitian matrix has ρ eigenvalues
and ρ orthonormalized eigenstates. However, fractional shift equation is a generalized
eigenvalue equation with Hermitian operator f(ε) on the right hand side of this equa-
tion. Hence for each ε the number r(ε) of linearly independent eigenstates |ϕd(ε)〉 of
this equation may be anything from r(ε) = 0 to r(ε) = ρ. If h(ε) is regular (which is
usually the case) this number equals rank of the operator f(ε), i.e. r(ε) = rank(f(ε)).

In general, eigenstates |ϕd(ε)〉 of the fractional shift eigenvalue equation are not
orthogonal to each other. Hence usually 〈�a

d (ε)|Sa |�a
d ′(ε)〉 	= 0 (d 	= d ′). Orthogo-

nal to each other are complete embedded eigenstates |�d(ε)〉, but not necessarily their
Xa

ρ-components. However, those components satisfy

〈
�a

d (ε) |f(ε)| �a
d ′(ε)

〉 = 0, d 	= d ′. (25)

This can be easily derived from (22a). Note further that all r(ε) embedded eigenstates
|�d(ε)〉(d = 1, . . . , r(ε)) have the same eigenvalue ε and hence each linear combi-
nation of those eigenstates is again an embedded eigenstate of the combined system
with this eigenvalue. However, corresponding linear combination of the eigenstates
|ϕd(ε)〉 of the fractional shift equation is usually not an eigenstate of this equation.
Each eigenstate |ϕd(ε)〉 of (22a) has well defined fractional shift xd(ε). Hence, unless
xd(ε) = xd ′(ε), linear combination a|ϕd(ε)〉 + b|ϕd ′(ε)〉 is not an eigenstate of (22a)
and it has not well defined fractional shift.

In the analysis of the solutions to the fractional shift eigenvalue equation important
are some characteristic points ε ∈ D. Those are singular, critical and resonant points
[8].

Singular points ε0 ∈ D correspond to embedded singular solutions of the combined
system. Each such solution satisfies x(ε0) = 0 and it describes perturbed eigenvalue
that in the limit n → ∞ coincides with some unperturbed eigenvalue (see Appen-
dix B.2). As shown in Sect. 6.1., singular solutions are treated by the Eq. 19. According
to (22b), fractional shift xd(ε0) = 0 corresponds to the eigenvalue Xd(ε0) = ±∞
of the fractional shift equation. Infinite value of Xd(ε0) is not a proper eigenvalue of
this equation. This is consistent with the fact that fractional shift equation produces all
embedded cardinal solutions and no singular solution. However, one can consider some
singular solutions as a limit case of cardinal solutions. If lim

ε→ε0
Xd(ε)f(ε)|ϕd(ε)〉 is well

defined and finite and if lim
ε→ε0

Xd(ε) = ±∞, one must have lim
ε→ε0

f(ε)|ϕd(ε)〉 = 0.

In this case in a point ε = ε0 one has a singular solution. Accordingly, in addition
to embedded cardinal solutions fractional shift equation can (as a limit case) produce
some embedded singular solutions. Those solutions may exist only in some isolated
points x0 ∈ D.
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Second type of characteristic points are critical points. If the system S b
∞ contains

a single one-parameter eigenvalue band, operator f(ε) has rank one for each interior
point ε ∈ D, except possibly for some isolated points εc ∈ D where this rank vanishes.
Such points were named critical points [8]. One can generalize the notion of critical
point to arbitrary system S b

∞ where characteristic operator f(ε)may have any rank≤ ρ.
In general, global characteristic operator f(ε) can contain several characteristic oper-
ators fν(ε) which correspond to various eigenvalue bands. Rank rν(ε) = rank(fν(ε))
associated with the eigenvalue band ν is constant for each ε ∈ Iν which is an interior
point in Iν , except possibly for some isolated points εc ∈ Iν . By definition, those
isolated points are critical points. This is a natural generalization of the notion of a
critical point from the case of a single one-parameter eigenvalue band to a general
case of several multiparameter eigenvalue bands.

Third type of characteristic points are resonant points. In a resonant point εr ∈ D
operator h(εr ) is singular. Hence there is at least one eigenstate |ϕd(ε)〉 ∈ Xa

ρ of
fractional shift eigenvalue equation such that h(εr )|ϕd(εr )〉 = 0. This expression is
the same as the generic eigenvalue equation (15a) where εr ∈ D. There are two pos-
sibilities: either f(εr )|ϕd(εr )〉 	= 0 or f(εr )|ϕd(εr )〉 = 0. If f(εr )|ϕd(εr )〉 	= 0 and
if the coupling β is sufficiently small, in some neighborhood of this resonant point
density ρa(ε) = 〈�a

d (ε)|Sa |�a
d (ε)〉 of the Xa

ρ-component of the embedded eigenstate
|�d(ε)〉 exhibits a strong resonance feature. This is a rational for the name resonant
point [8]. Another possibility is f(εr )|ϕd(εr )〉 = 0. If this is the case, the point ε = εr

is an anomal point. In such a point combined system may have one or several isolated
eigenstates [8]. In Sects. 6.2.3. and 6.2.4. those two possibilities are discussed in more
details.

6.2.2 Probabilities associated with embedded cardinal eigenstates

Component |�a
d (ε)〉of the embedded cardinal eigenstate |�d (ε)〉determines all related

properties of the open system S a
ρ . In particular, probability amplitude to find local state

|�s〉 in this eigenstate equals 〈�s |S|�d(ε)〉 [8]. Hence and due to (24b) probability
density ρd,s(ε) to find this state in the embedded eigenstate |�d(ε)〉 equals

ρd,s(ε) ≡ |〈�s |S| �d(ε)〉|2 = β2 〈ϕd(ε) |Sa | �s〉 〈�s |Sa | ϕd(ε)〉
[
π2β4 + (Xd(ε))2] 〈ϕd(ε) |f(ε)| ϕd(ε)〉 , (26a)

One can also consider total probability Cd,s to find local state |�s〉 in any of the
embedded eigenstates |�d(ε)〉 corresponding to index d. By definition, this probability
equals

Cd,s =
∫

ρd,s(ε)dε. (26b)

Of more practical interest is probability density σs(ε) to find local state |�s〉 in any
of the embedded eigenstates |�d(ε)〉 with the eigenvalue ε. In other words, σs(ε) is a
probability density to find local state |�s〉 with the eigenvalue ε ∈ D:
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σs(ε) =
∑

d

ρd,s(ε) =
∑

d

|〈�s |S| �d(ε)〉|2 , (27a)

Corresponding total probability Ss to find local state |�s〉 in any of the embedded
eigenstates of the combined system equals

Ss ≡
∑

d

Cd,s =
∫

σs(ε)dε. (27b)

In conjuncture with isolated eigenvalues εr and corresponding probabilities wr,s ,
probability density σs(ε) determines eigenvalue distribution (or spectral distribution)
of the local state |�s〉. In other words, if S a

ρ is an open system and if one measures
eigenvalue of the local state |�s〉, one should find each isolated eigenvalue εr with the
probability wr,s and each embedded eigenvalue ε ∈ D with probability density σs(ε).

In analogy to (18b) one can also consider probability density ρd(ε) to find embed-
ded eigenstate |�d(ε)〉 in a local system S a

ρ , i.e. to find this eigenstate in any of the
local states |�s〉. Due to (1c) one has

ρd(ε) ≡
∑

s

ρd,s(ε) = β2 〈ϕd(ε) |Sa | ϕd(ε)〉
[
π2β4 + Xd(ε)2

] 〈ϕd(ε) |f(ε)| ϕd(ε)〉 , (28a)

This equals norm of the Xa
d -component of the embedded cardinal eigenstate |�d (ε)〉:

ρd(ε) = 〈
�a

d (ε)
∣∣Sa

∣∣�a
d (ε)

〉
. (28b)

Above expression is formally identical to the expression (18c).
Densities σs(ε) have a direct physical interpretation. However, densities ρd(ε) are

more convenient mathematically since those densities are given by simple expressions
(28). For each ε ∈ D those two densities satisfy

∑

s

σs(ε) =
∑

d

ρd(ε) (29a)

Hence

∑

s

Ss =
∑

d

Cd (29b)

where

Cd ≡
∑

s

Cd,s =
∫

ρd(ε)dε. (29c)
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6.2.3 Emergence of resonance in the case of the weak coupling

As shown in the Appendix E, if f (ε) is smooth in a point ε ∈ D and if Xd(ε) ≡ Xd

(ε, β) is nondegenerate, one has

∂ Xd(ε, β)

∂ε
=

〈
ϕd(ε, β)

∣∣β2dω(ε)/dε − Sa − Xd(ε, β)df(ε)/dε
∣∣ ϕd(ε, β)

〉

〈ϕd(ε, β) |f(ε)| ϕd(ε, β)〉 , (30)

where |ϕd(ε, β)〉 is eigenstate of the fractional shift eigenvalue equation corresponding
to the eigenvalue Xd(ε, β). For clarity, in the above and in the following expressions
dependence on β is explicitly written.

Above expression is the rate of change of the eigenvalue Xd(ε, β) of the fractional
shift equation with respect to parameter ε. Let the eigenvalue Es of S a

ρ satisfy Es ∈ D
and let this eigenvalue be nondegenerate. If f(Es)|�s〉 	= 0 and if β is sufficiently
small, components |�a

d (ε, β)〉 ∈ Xa
ρ of embedded eigenstates |�d(ε, β)〉 can be in

the vicinity of the resonant point ε = εs(β) approximated as (see Appendix E)

∣∣�a
d (ε, β)

〉 ≈
∣∣�a

d (ε, β)
〉◦ = β

√
π2β4 + as(β)2 (ε − εs(β))2√〈θs(β) |f(εs)| θs(β)〉

|θs(β)〉 δs,d ,

(31a)

where

as(β) ≡ −∂ Xs(εs(β), β)

∂εs
=

〈
θs(β)

∣∣Sa − β2dω(εs)/dεs
∣∣ θs(β)

〉

〈θs(β)| f(εs(β)) |θs(β)〉 , ε ∈ (εs),

(31b)

and where |θs(β)〉 is the eigenstate and εs(β) the corresponding eigenvalue of the
generic eigenvalue equation (15a) that satisfy |θs(0)〉 = |�s〉 and εs(0) = Es . Since
Es is nondegenerate, generic eigenvalue equation has exactly one solution that satisfy
those conditions. Approximation (31) is valid in some (small) neighborhood (εs) of
the point ε = εs(β). In particular, if ε ∈ (εs) and if d 	= s one has |�a

d (ε, β)〉 ≈ 0.
According to (31a) probability density ρd(ε, β) = 〈�a

d (ε, β) |S| �a
d (ε, β)〉 can be

approximated as

ρd(ε, β) ≈ ρ0
d (ε, β) = ρ0

s (ε, β)δd,s, ε ∈ (εs), (32a)

where

ρ0
s (ε, β) = β2 Ks(β)

π2β4 + as(β)2 (ε − εs(β))2 , Ks (β) = 〈θs (β) |Sa | θs (β)〉
〈θs (β) |f(εs)| θs (β)〉 ,

(32b)
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and where as(β) is given by (31b). Density ρ0
s (ε, β) represents a universal resonance

curve [12] centered at the point ε = εs(β) and with the width εs(β)

εs(β) = πβ2

as(β)
= πβ2 〈θs(β) |f(εs)| θs(β)〉

〈
θs(β)

∣∣Sa − β2dω(εs)/dεs
∣∣ θs(β)

〉 (33a)

Height of this curve equals ρ0
s (εs, β) and it has the area w0

s (β) = ∫
ρ0

s (ε, β)dε

ρ0
s (εs(β), β) = 〈θs(β) |Sa | θs(β)〉

π2β2 〈θs(β) |f(εs)| θs(β)〉 , (33b)

w0
s (β) = 〈θs(β) |Sa | θs(β)〉

〈θs(β) |Sa | θs(β)〉 − β2 〈θs(β) |dω(εs)/dεs | θs(β)〉 ≡ Ks(β)

as(β)
. (33c)

The area w0
s (β) is an approximation of a total probability to find any of the states

|�s〉 with the eigenvalue ε anywhere in the interval (εs). Note that expression (33c) is
formally identical to the expression (18b) for the probability to find isolated eigenstate
|�r 〉 in a local system S a

ρ .
From the expression (31) one finds in a similar way probability densities ρd,p(ε, β)

= ∣∣〈�p
∣∣S a∣∣�d(ε, β)

〉∣∣2 and σp(ε, β) ≡ ∑
d ρd,p(ε, β). Since β is small one has

|θs(β)〉 ≈ |θs(0)〉 = |�s〉. Hence those densities satisfy

σd,p(ε, β) ≈ ρ0
s (ε, β)δd,pδp,s,

σp(ε, β) ≡ ∑
d ρd,p(ε, β) ≈ ρ0(ε, β)δp,s, ε ∈ (εs). (33d)

In addition, in the case of small β expression (33c) implies w0
s (β) ≈ 1.

In conclusion, if Es ∈ D is nondegenerate and if f(Es) |�s〉 	= 0, for sufficiently
small interaction parameter β there is an embedded eigenstate |�s(ε, β)〉 with the
property that component

∣∣�a
s (ε, β)

〉
of this eigenstate exhibits a strong resonance

feature in the neighborhood (εs) of the resonant point ε = εs(β), while Xa
ρ-compo-

nents of all other embedded eigenstates |�d(ε, β)〉 (d 	= s) are negligible in (εs) [8].
In particular, probability density σs(ε, β) to find local state |�s〉 with the eigenvalue
ε ∈ D exhibits a strong resonance feature in (εs). The same applies to the probabil-
ity density ρs(ε, β) and one has ρs(ε, β) ≈ σs(ε, β). This property is rational for the
name “resonant point” [8].

Similar results are obtained if Es ∈ D is degenerate. However, in this case there are
several eigenstates |θr (β)〉 of a generic eigenvalue equation that satisfy |θr (0)〉 = |�s〉
and one may have several closed spaced resonant structures corresponding to the
degeneracy of Es [8].

Emergence of resonance in the case of the weak coupling is usually derived within
the formalism of the time-independent perturbation expansion approach [1,2]. If a
system of particles interacts weakly with the field (such as e.g. electromagnetic field),
there are two main effects of such an interaction. First, due to this interaction each
eigenvalue Es of this system shifts to a new position εs . Second, this shifted eigenvalue
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is not sharp and it acquires the shape of the universal resonance curve [1]. As shown
above, both effects are correctly described within the small β limit of the suggested
approach.

6.2.4 Anomal points and isolated solutions

As shown in a previous section, if β is sufficiently small the width εs(β) of the uni-
versal resonance curve (32b), as calculated according to (33a), is small. This implies
emergence of resonance in the case of small β. However, if 〈θr (β) |f(εr )| θr (β)〉
is sufficiently small one may have small εs(β) even for large β. Accordingly,
open system S a

ρ may display a strong resonant features even in the case of strong
interaction with its surrounding. Such an extreme case is the case of anomal point
β = βa where εa = εr (βa). In this point there is at least one eigenstate |θr (β)〉 of
the generic eigenvalue equation such that h(εa) |θr (βa)〉 = 0 and f(εa)|θr (βa)〉 =
0. This implies 〈θr (βa) |f(εa)| θr (βa)〉 = 0. Corresponding eigenvalue Xr (εa, βa)

of a fractional shift eigenvalue equation can assume any value and fractional shift
xr (εa, βa) is hence not well defined [8]. However, this case can be analyzed as a limit
lim

β→βa
〈θr (β)|f(εr )| θr (β)〉. Let εr (β) be nondegenerate in the point β = βa . In the

process β → βa the width εr (β) of resonance curve (32b) decreases, approximate
probability (33c) improves, and in a limit εr (β) → 0 it is exact. In this limit reso-
nant shape at the anomal point εa = εr (βa) becomes infinitely narrow and infinitely
high. One obtains qualitatively the same result in the case when εr (β) is degenerate
in the point β = βa . In general, such infinitely narrow and infinitely high densi-
ties correspond to one or several isolated eigenstates [8]. One finds that components∣∣�a

r

〉 ∈ Xa
ρ of those eigenstates are given by expressions (15b,c) (see Appendix E).

Thus all cardinal isolated eigenstates, those with eigenvalues εr /∈ D as well as those
with eigenvalues εr ∈ D, are described by the same expressions (15–16).

7 Completeness relations

As shown in the Appendix C, isolated eigenstates and embedded cardinal eigenstates
of the combined system satisfy

∑

r

wr,s + Ss = 1, s = 1, . . . , ρ, (34a)

where

wr,s = ∣∣〈�s
∣∣S a∣∣�r

〉∣∣2 , Ss =
∑

d

∫ ∣∣〈�s
∣∣S a∣∣�d(ε)

〉∣∣2 dε (34b)

Quantity wr,s is a probability to find local state |�s〉 in the isolated eigenstate
|�r 〉 of the combined system, while Ss is a probability to find this state in any of the
embedded cardinal eigenstate |�d(ε)〉 of the combined system. Relation (34a) thus
expresses the fact that one must find each local state |�s〉 ∈ Xa

ρ with certainly either in
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some isolated eigenstate |�r 〉 of the combined system, or in some embedded cardinal
eigenstate |�d(ε)〉 of this system.

Note that expression (34a) does not contain any contribution from embedded sin-
gular eigenstates. As shown in Sect. 6.1, those eigenstates do not contribute to the
properties of the open system S a

ρ .
Quantities wr,s and Ss are given by expressions (18a), (26a) and (27). Summing

expression (34a) over s one finds

∑

r

wr +
∑

s

Ss = ρ, (34c)

where probabilities wr = ∑
s wr,s are given by expression (18b).

Expressions (34) are completeness relations. Those expressions are satisfied for
each value of the coupling parameter β, however large. Expressions (34) thus provide
an efficient way for the verification of the suggested method [8].

8 Open two-dimensional quantum systems

Above, a general method for the exact treatment of open finite-dimensional quantum
system S a

ρ was presented. However, of special importance are open two-dimensional
systems S a

2 [13]. In the case of such systems generic eigenvalue equation and frac-
tional shift eigenvalue equation simplify. For clarity, in the following expressions
dependence on the coupling parameter β will be explicitly shown.

Isolated eigenvalues and eigenstates of the combined system as well as resonant
points are solutions of the generic equation (15a). This equation has a nontrivial solu-
tion if and only if the determinant of the system vanishes. In a 2 × 2 case condition
|h(εr , β)| = 0 reads

|h(εr , β)| ≡ h11(εr , β)h22(εr , β) − h12(εr , β)h21(εr , β) = 0, (35a)

where

hsp(ε, β) ≡ β2ωsp(ε) + Asp − εSa
sp, (35b)

are matrix elements of the operator h(ε, β) in the base {|s〉}.
Hence

β4 |ω(εr )| + β2�(εr ) + ∣∣A − εr Sa
∣∣ = 0, (36a)

where

�(ε) = T r (ω(ε)) T r(A − εSa) − T r
(
ω(ε)(A − εSa)

)

≡ ω11(ε)
(

A22 − εSa
22

) + ω22(ε)
(

A11 − εSa
11

) − ω12(ε)
(

A21 − εSa
21

)

−ω21(ε)
(

A12 − εSa
12

)
. (36b)
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and where ωsp(ε) are matrix elements of the derived operator ω(ε), while |ω(ε)|
and |A − εSa | are determinants of ω(ε) and (A − εSa), respectively. Each solution
ε = εr (β) of (36a) is an eigenvalue of the generic eigenvalue equation. Once this
eigenvalue is obtained, the corresponding eigenstate |θr 〉 ≡ |θr (β)〉 is:

|θr (β)〉 = h12(εr , β) |1〉 − h11(εr , β) |2〉 . (37)

This applies to the usual case when either h12(εr , β) 	= 0 or h11(εr , β) 	= 0.
However, if for some β = β0 one has h12(εr , β0) = 0 and h11(εr , β0) = 0, in this
case eigenvalue εr (β0) is degenerate and each linear combination of |1〉 and |2〉 is the
corresponding eigenstate.

If εr (β) /∈ D, eigenstate (37) determines Xa
ρ-component

∣∣�a
r

〉
of the isolated eigen-

state |�r 〉 according to expressions (15b,c). If however εr (β) ∈ D, one has an isolated
eigenstate in this point only if the additional condition (16) is satisfied. Provided this
is the case, Xa

ρ-component of this eigenstate is again given by expressions (15b,c) and
the point ε = εr is an anomal point.

Consider now solutions of expression (36a) from another point of view. This expres-
sion is quadratic in x = β2 and one can solve this expression for β to obtain two
solutions of a type β = β(ε)

β1,2(ε) =
[

−�(ε) ± √
�(ε)2 − 4 |ω(ε)| |A − εSa |

2 |ω(ε)|

]1/2

. (38a)

The quantity

�(ε) = �(ε)2 − 4 |ω(ε)| ∣∣A − εSa
∣∣ , (38b)

is discriminant [14] of the quadratic equation (36a). Since β must be real, solutions
(38a) exist only if �(ε) ≥ 0. In addition, the expression inside square brackets in (38a)
must be nonnegative. If this is the case, one has two solutions β1,2(ε) if �(ε) > 0,
one solution β(ε) if �(ε) = 0 and no solution if �(ε) < 0. One has also to consider
a special case |ω(ε)| = 0 when quadratic equation (36a) reduces to a linear equation
(in x = β2) with a solution

β(ε) =
√

−|A − εSa |
�(ε)

, if |ω(ε)| = 0. (38c)

The same expression is obtained as the |ω(ε)| → 0 limit of the expression (38a).
Provided �(ε) 	= 0 and provided the expression under the square root in (38c) is
nonnegative, parameter β is real and finite. This is an admissible solution to (36a).
However, if the expression under the square root in (38c) is negative, parameter β is
complex which is not an admissible solution.

Solutions (38) of a type β = β(ε) are convenient mathematically since those solu-
tions are given in a closed form. However, physically are more important inverse
solutions of a type ε = ε(β) since each such solution is an eigenvalue of the generic
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eigenvalue equation. In general, one can have several solutions of a type ε = ε(β)

while one can have at most two solutions of a type β = β(ε). Note that if β = 0
eigenvalues of the generic equation coincide with local eigenvalues E1 and E2. Hence,
among all such solutions one must have two solutions ε = ε1(β) and ε = ε2(β) that
satisfy ε1(0) = E1 and ε2(0) = E2, respectively.

Consider next fractional shift eigenvalue equation (22a). This equation has a non-
trivial solution if and only if determinant of a system vanishes. In the case of a two-
dimensional system S a

2 this implies

Xd(ε, β)2 |f(ε)| − Xd(ε, β)�(ε, β) + |h(ε, β)| = 0, ε ∈ D, (39a)

where

�(ε, β) = T rh(ε, β)T r f(ε) − T r [h(ε, β)f(ε)]

≡ h11(ε, β) f22(ε) + h22(ε, β) f11(ε) − h12(ε, β) f21(ε) − h21(ε, β) f12(ε).

(39b)

and where |f(ε)| and |h(ε, β)| are determinants of f(ε) and h(ε, β), respectively.
Solutions of the above equation are eigenvalues Xd(ε, β) of a fractional shift eigen-

value equation. Those eigenvalues must be real.
If |f(ε)| 	= 0 expression (39a) has formally two solutions

X1,2(ε, β) = �(ε, β) ± √
�(ε, β)2 − 4 |f(ε)| |h(ε, β)|

2 |f(ε)| . (40a)

The quantity

�(ε) = �(ε)2 − 4 |f(ε)| |h(ε)|, (40b)

is discriminant [14] of the quadratic equation (39a). Using definition (39b) and since
|f(ε)| ≥ 0, one finds �(ε) ≥ 0. The quantity (40a) is hence guarantied to be real
for each ε ∈ D. In conclusion, if |f(ε)| 	= 0 expression (39a) has two real solutions
with possible exception of some isolated points ε = ε0 ∈ D where �(ε0, β) = 0 and
where this expression has only one real solution X (ε0, β).

Another possibility is |f(ε)| = 0. In this case expression (39a) has only one solution

X (ε, β) = |h(ε, β)|
�(ε, β)

, if |f(ε)| = 0. (40c)

The same expression is obtained as the |f(ε)| → 0 limit of the expression (40a).
One has |f(ε)| = 0 for each ε ∈ D if the system S b

∞ that interacts with the two-
dimensional system S a

2 contains a single one-parameter eigenvalue band [8]. In this
case for each ε ∈ D combined system has at most only one embedded eigenstate.
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Once Xd(ε, β) is obtained as a solution of (39a), Xa
2 -component

∣∣�a
d (ε, β)

〉
of the

embedded eigenstate |�d(ε, β)〉 is given by expressions (24) where

|ϕd(ε, β)〉 = [h12(ε, β) − Xd(ε, β) f12(ε)] |1〉 + [Xd(ε, β) f11(ε) − h11(ε, β)] |2〉 .

(41)

This is nondegenerate case. If however both coefficients in the above expression
are zero, eigenvalue Xd(ε, β) is degenerate and in this case each linear combination
of |1〉 and |2〉 is the corresponding eigenstate.

Note that in a resonant point ε = εr one has Xd(εr , β) = 0 either for d = 1 or for
d = 2. If this is the case expression (41) reduces to the expression (37).

9 Examples

Let me illustrate the above method with some examples. In order to cover various
aspects of open quantum systems, two different two-dimensional quantum systems in
the interaction with two different surroundings will be considered.

9.1 Example E1

As a first example consider the system S a
2 that is in the base {|s〉} characterized by

matrices

A =
(

0.5 −0.25
−0.25 0.6

)
, Sa =

(
1.1 0.1
0.1 1

)
, (42a)

In order to illustrate most general case, this system is described by a generalized
eigenvalue equation (1a) where Sa 	= Ia . Eigenvalues and eigenstates of this system are

E1 = 0.25474, E2 = 0.85536, (42b)

|�1〉 =
(

0.72621
0.57942

)
, |�2〉 =

(
0.62454

−0.82064

)
, (42c)

where |�s〉 are orthonormalized according to (1b).
In (42c) and in the following expressions I will freely mix bracket notation with a

standard vector notation. Strictly, this is not allowed and one should write, for exam-
ple, |�1〉 = 0.72621 |1〉 + 0.57942 |2〉, etc. Nevertheless, with a due caution one can
use slightly inaccurate notation (42c).

Let the surrounding of the system S a
2 contain a single eigenvalue band in the interval

D ≡ I1 = [a1, b1] = [−1, 1] and let this surrounding contain no isolated eigenvalues
λi . As emphasized in Sect. 4, interaction of this eigenvalue band with the system S a

2
is described by the characteristic operator f1(ε) which is identically zero outside the
interval I1 and which is nonnegative inside this interval. As an example of such an
operator consider
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Fig. 1 Example E1. (a) Matrix elements fsp(ε) of the characteristic matrix f(ε). (b) Eigenvalues ξs (ε) of

the characteristic matrix. Eigenvalues E1 and E2 of the local system S a
2 are inside the range D

f1(ε) =
⎛

⎝
f (1)
11 (ε) f (1)

12 (ε)

f (1)
21 (ε) f (1)

22 (ε)

⎞

⎠ ≡
⎛

⎝
q(1)

11 (ε) q(1)
12 (ε)

q(1)
21 (ε) q(1)

22 (ε)

⎞

⎠ ·
{

1 if ε ∈ I1
0 otherwise

(43a)

where q(1)
sp (ε) are polynomials

q(1)
11 (ε) = (

ε2 − 1
)2 (

2ε2 − 2ε + 1
)
,

q(1)
22 (ε) = (

ε2 − 1
)2 (

ε2 − 2ε + 2
)
, (43b)

q(1)
12 (ε) ≡ q(1)

21 (ε) = (
ε2 − 1

)3
.

Matrix elements f (1)
sp (ε) are identical to polynomials q(1)

sp (ε) inside the interval I1,
and they are identically zero outside this interval. Since S b

∞ contains only this sin-
gle eigenvalue band, one has f(ε) ≡ f1(ε) and hence fsp(ε) ≡ f (1)

sp (ε). In Fig. 1a
are shown those matrix elements, while in Fig. 1b are shown eigenvalues ξ1(ε) and
ξ2(ε) of the characteristic matrix f(ε). Since polynomials q(1)

sp (ε) are zero on both
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end-points of the interval I1, those matrix elements and eigenvalues are continuous
at those end-points and they vanish outside the range D. As required, eigenvalues
ξs(ε) are nonnegative (see Fig. 1b). Diagonal matrix elements fss(ε) of f(ε) are also
nonnegative (see Fig. 1a). Rank of matrix f(ε) equals two for each interior point ε ∈ D
(excluding end-points a1 = −1 and b1 = 1 of this interval), except for the critical
point ε = εc = 0.38197 where rank(f(εc)) = 1 and where eigenvalue ξ2(ε) of f(ε)
vanishes: ξ2(εc) = 0.

rank (f(ε)) =

⎧
⎪⎨

⎪⎩

2 if ε ∈ D & ε 	= εc

1 if ε = εc = 0.38197

0 if ε ∈ D

(44)

Since for almost each ε ∈ D one has rank(f(ε)) > 1, this characteristic matrix
corresponds to multiparameter eigenvalue band. The case of the interaction of a sys-
tem S a

ρ with a system S b
∞ that contains a single one-parameter eigenvalue band is

considered elsewhere [8].
In Fig. 1b are also shown eigenvalues E1 and E1 of the (closed) local system S a

2 .
Both eigenvalues are contained inside the eigenvalue band I1 of the system S b

∞.
Once characteristic matrix f1(ε) is known, corresponding derived matrix ω1(ε) is

given by expressions (10). In particular, since matrix elements of f1(ε) are polynomials
inside the interval D ≡ I1, one can use expressions (11) to obtain:

ω
(1)
11 (ε) = q(1)

11 (ε) ln
∣∣∣ ε+1
ε−1

∣∣∣ − g(1)
11 (ε),

ω
(1)
22 (ε) = q(1)

22 (ε) ln
∣∣∣ ε+1
ε−1

∣∣∣ − g(1)
22 (ε), (45a)

ω
(1)
12 (ε) ≡ ω

(1)
21 (ε) = q(1)

12 (ε) ln
∣∣∣ ε+1
ε−1

∣∣∣ − g(1)
12 (ε),

where q(1)
sp (ε) are polynomials (43b), while g(1)

sp (ε) are polynomials:

g(1)
11 (ε) = 4ε5 − 4ε4 − 14

3
ε3 + 20

3
ε2 − 6

5
ε − 32

15
,

g(1)
22 (ε) = 2ε5 − 4ε4 + 2

3
ε3 + 20

3
ε2 − 28

5
ε − 32

15
, (45b)

g(1)
12 (ε) ≡ g(1)

21 (ε) = 2ε5 − 16

3
ε3 + 22

5
ε.

Since f(ε) ≡ f1(ε) one has ω(ε) ≡ ω1(ε). In Fig. 2a are shown matrix elements
ωsp(ε), while in Fig. 2b are shown eigenvalues µ1(ε) and µ2(ε) of the derived matrix
ω(ε). All those quantities are finite and continuous functions of ε for each real ε,
including end-points a1 = −1 and b1 = 1 of the interval I1. This follows from the
property lim

x→0
(x ln(x)) = 0 and from the fact that matrix elements of the operator

f1(ε) are polynomials that vanish at those end-points [7]. Note further that in accord
with the requirement (14b), both eigenvalues are decreasing functions of ε for each
ε /∈ D = [−1, 1]. However, if ε ∈ D those eigenvalues may be decreasing as well as
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Fig. 2 Example E1. (a) Matrix elements ωsp(ε) of the derived matrix ω(ε). (b) Eigenvalues µs (ε) of the
derived matrix ω(ε)

increasing functions of ε (see Fig. 2b). The same applies to diagonal matrix elements
ωss(ε) of the derived matrix ω(ε) (see Fig. 2a).

Generic eigenvalue equation (15a) produces all cardinal isolated solutions of the
combined system and all resonant points. In the case of a two dimensional system S a

2 ,
this equation reduces to the Eqs. 36 and 37. Equation 36 produces eigenvalues of the
generic eigenvalue equation while Eq. 36 produces all the corresponding eigenstates.

Solutions of the Eq. 36 of a type ε = ε(β) are shown in Fig. 3. There are six
such solutions: εR1(β), εR2(β), ε1(β), ε2(β), εL1(β) and εL2(β). Those solutions are
eigenvalues of a generic eigenvalue equation considered as functions of the coupling
parameter β. Eigenvalues inside the range D are resonant points, while eigenvalues
outside this range are isolated eigenvalues of the combined system.

If there is no interaction (β = 0) eigenvalues of the generic equation reduce
to local eigenvalues. In particular, one has εR1(0) = E1 and εR2(0) = E2. Both
eigenvalues are contained in the range D. As the coupling β increases, those two
eigenvalues change as continuous functions εR1(β) and εR2(β). For small β one has
εR1(β), εR2(β) ∈ D and those eigenvalues are resonant points. However, if the cou-
pling is as strong as β > βR2 one has εR2(β) /∈ D and this eigenvalue becomes right
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Fig. 3 Eigenvalues εr (β) of the generic equation considered as functions of the coupling β. Eigenvalue
distributions of local states |�s 〉 for the coupling β corresponding to lines (a) and (b) are shown in Figs. 5
and 6, respectively. For details see text

isolated eigenvalue of the combined system. Also, if β > βR1 one finds εR1(β) /∈ D
and this eigenvalue becomes another right isolated eigenvalue of the combined sys-
tem. As β > βR1 further increases, isolated eigenvalues εR1(β) and εR2(β) continue
to increase. This is in accord with expressions (14) and (17) that imply ∂εR/∂β > 0
for each right isolated eigenvalue εR ∈ Īr ight where Īr ight is extreme right subinterval
of D (see Sect. 5). In the above example Īr ight = (b1,∞). Hence for each β > βR1
combined system has two right isolated eigenvalues. This is maximum number of
extreme right isolated eigenvalues that combined system with ρ = 2 may have.

In the points βR1 and βR2 one has ε = b1 = 1. Inserting this value into (36a) and
using expressions (45) (which imply ω11(1) = 4/3, ω22(1) = 12/5 and ω12(1) =
−16/15) one finds

2.06222 · β4 − 2.72 · β2 + 0.1175 = 0 (46a)

This is quadratic equation in the unknown x = β2. Since β ≥ 0 there are two
solutions, βR2 = 0.21146 and βR1 = 1.12883.

Consider now remaining four eigenvalues εL1(β), εL2(β), ε1(β) and ε2(β). Note
that εL1(β) and ε1(β) are two branches of one and the same analytic function β =
β1(ε), while εL2(β) and ε2(β) are two branches of another analytic function β =
β2(ε). It is more convenient to analyze those functions in a form β = β1(ε) and
β = β2(ε) using expressions (38). Condition dβ1(ε)/dε = 0 determines the point
(β1, ε1) = (0.67519,−0.76673) while condition dβ2(ε)/dε = 0 determines the point
(β2, ε2) = (0.47058,−0.63563). Eigenvalues εL1(β) and ε1(β) exist only if β ≥ β1
while eigenvalues εL2(β) and ε2(ε) exist only if β ≥ β2. For each β (where defined)
eigenvalues ε1(β) and ε2(β) are inside the range D and hence these eigenvalues are
resonant points. Concerning eigenvalues εL1(β) and εL2(β), as β increases one has
at first εL1(β), εL2(β) ∈ D and those eigenvalues are resonant points. However, if the
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coupling is as strong as β > βL2 one has εL2(β) /∈ D and this eigenvalue becomes left
isolated eigenvalue of the combined system. Also, if β > βL1 one finds εL1(β) /∈ D
and this eigenvalue becomes another left isolated eigenvalue of the combined system.
As β > βL1 further increases, isolated eigenvalues εL1(β) and εL2(β) continue to
decrease. This is in accord with expressions (14) and (17) that imply ∂εL/∂β < 0 for
each left isolated eigenvalue εL ∈ Īle f t where Īle f t is extreme left subinterval of D.
In the above example Īle f t = (−∞, a1). Hence for each β > βL1 combined system
has two left isolated eigenvalues. This is maximum number of extreme left isolated
eigenvalues that combined system with ρ = 2 may have.

In the points βL1 and βL2 one has ε = a1 = −1. In analogy to (46a) one finds

7.18222 · β4 − 9.06667 · β2 + 2.5375 = 0. (46b)

which implies βL2 = 0.64717 and βL1 = 0.91845.
Figure 3 provides detailed interaction landscape of the open system S a

2 that inter-
acts with its surrounding (system S b

∞). Note that left isolated eigenvalues εL1(β)

and εL2(β) cannot be derived by any standard perturbation expansion method. Those
eigenvalues do not exist in the point β = 0 and hence no perturbation expansion in
this point can reproduce those eigenvalues.

Once eigenvalues εR1(β), εR2(β), εL1(β) and εL2(β) are obtained as a solution of
(36a), one can derive corresponding isolated eigenstates according to (37) and (15b,c).
Those eigenstates determine all related properties of the combined system. In particu-
lar, probabilities wr,s and wr = wr,1+wr,2 are given by expressions (18). Those proba-

bilities are shown in Fig. 4. In Fig. 4a are shown probabilitieswR1,s ≡ ∣∣〈�s
∣∣Sa∣∣�R1

〉∣∣2

to find right isolated eigenstate |�R1〉 in a local state |�s〉, as well as global proba-
bility wR1 = wR1,1 + wR1,2 to find this eigenstate in a local system Sa

2. Since right
isolated eigenvalue εR1(β) exists only if β > βR1 = 1.12883, those probabilities
are zero if β < βR1. As β continuously increases from β = 0, in a point β = βR1
those probabilities discontinuously jump to wR1(βR1+) = 0.44324, wR1,1(βR1+) =
0.43952 and wR1,2(βR1+) = 0.00372, respectively (see Fig. 4a). Similarly, right
isolated eigenvalue εR2(β) exists only if β > βR2 = 0.21146. As β continuously
increases, in this point corresponding probabilities discontinuously jump from zero
to wR2(βR2+) = 0.81727, wR2,1(βR2+) = 0.00026 and wR2,2(βR2+) = 0.81701,
respectively (see Fig. 4b). In Fig. 4c and d are shown corresponding probabilities for
left isolated eigenstates |�L1〉 and |�L2〉, respectively. Probabilities wL1 and wL1,s ,
considered as functions of coupling parameter β, are zero if β ≤ βL1 = 0.91845 and in
this point those probabilities discontinuously jump to values wL1(βL1+) = 0.17524,
wL1,1(βL1+) = 0.17171 and wL1,2(βL1+) = 0.00353, respectively (see Fig. 4c).
Similarly, probabilities wL2 and wL2,s , considered as functions of coupling parameter
β, are zero if β ≤ βL2 = 0.64717 and in this point those probabilities discontin-
uously jumps to the values wL2(βL2+) = 0.18305, wL2,1(βL2+) = 0.00787 and
wL2,2(βL2+) = 0.17518, respectively (see Fig. 4d).

It remains to determine whether the combined system contains any anomal point
where this system could also have an isolated eigenstate. Each anomal point ε = εc

is an interior point of a range D and in this point one must have a nontrivial state |θc〉
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Fig. 4 Probabilities wr,s (β) ≡ |〈�s |S |�r (β)〉|2 to find isolated eigenstate |�r (β)〉 in a local state |�s 〉
and probabilities wr = wr,1 +wr,2 to find this eigenstate in the system Sa

2. (a) Probabilities corresponding
to the eigenstate |�R1〉. (b) Probabilities corresponding to the eigenstate |�R2〉. (c) Probabilities corre-
sponding to the eigenstate |�L1〉. (d) Probabilities corresponding to the eigenstate |�L2〉
that satisfies f(εc) |θc〉 = 0 as well as h(εc) |θc〉 = 0. First condition implies that in
this point rank of a characteristic matrix f(ε) must be smaller than the dimension ρ of
the space Xa

ρ . According to (44), only a point ε = εc = 0.38197 has such a property.
Second condition implies that an anomal point must be a resonant point that satisfies
(36a). The solution β = β(ε) of (36a) is given by (38a). Inserting ε = εc into this
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Fig. 5 Eigenvalue distributions of local states |�1〉 and |�2〉 in the case β = 0.1. Those distributions
correspond to the line (a) in Fig. 3. (a) Probability densities σ1(ε, 0.1) and σ2(ε, 0.1) are sharply localized
inside the range D at positions εR1(0.1) and εR2(0.1), respectively. (b) Probability density σ1(ε, 0.1) and
universal resonance curve ρ0

1 (ε, 0.1) highly magnified. (c) Probability density σ2(ε, 0.1) and universal reso-

nance curve ρ0
2 (ε, 0.1) highly magnified. (d) Vertical scale in Fig. 5a highly magnified. Densities σs (ε, 0.1)

deviate from the ideal shape of the corresponding universal resonance curves ρ0
s (ε, 0.1)

expression one finds only one real solution βc = 0.32611. Geometrically, the point
(βc, εc) is on the intersection of the line ε = εc and of the function ε = εR1(β) (see
Fig. 3). This is the only candidate for the anomal point. Using (37) one finds that the
state |θc〉 which satisfies h(εc) |θc〉 = 0 does not satisfy f(εc) |θc〉. The point ε = εc

is hence not an anomal point. In conclusion, the system S∞ contains no anomal point
and hence no isolated eigenstate with the eigenvalue εc ∈ D.

Consider now cardinal embedded solutions of the combined system. Fractional shift
equation (22a) produces all such solutions. In a 2×2 case this equation reduces to Eqs.
39 and 41. In particular, eigenvalues Xd(ε, β) of a fractional shift eigenvalue equation
are solutions to the Eq. 39. Those solutions are given in the explicit form (40). This
determines eigenvalues Xd(ε, β) of a fractional shift equation for each ε ∈ D. Once
this eigenvalue is known, the corresponding Xa

ρ-component
∣∣�a

d (ε, β)
〉
of the embed-

ded eigenstate |�d(ε, β)〉 is given by expressions (41) and (24). This component deter-
mines all related properties of the open system S a

ρ . As an example, in Fig. 5 are shown
eigenvalue distributions of local states |�1〉 and |�2〉 in the case β = 0.1. Those dis-
tributions corresponds to the line (a) in Fig. 3. For this value of β combined system has
no isolated eigenstate and those distributions are completely determined by densities
σs(ε, 0.1) = ρ1,s(ε, 0.1) + ρ2,s(ε, 0.1) where ρd,s(ε, 0.1) = |〈�s |S| �d(ε, 0.1)〉|2.
As shown in Sect. 6.2.2, σs(ε, β) is a probability density to find local state |�s〉
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with the eigenvalue ε ∈ D. Due to the relatively weak interaction of the system
S a

2 with its surrounding, initial unperturbed eigenvalues Es ∈ D of S a
2 are only

slightly shifted to the new positions εs(0.1) (see Fig. 5a). Since εs(0.1) ∈ D, those
shifted eigenvalues are not sharp and they acquire the shape of the universal reso-
nance curves ρ0

s (ε, 0.1) as given by expression (32b). The widths of those two reso-
nant curves calculated according to (33a) are ε1(0.1) = 0.00137 and ε2(0.1) =
0.00143, respectively. Those widths are quite small and densities σs(ε, 0.1) are hence
well approximated with the corresponding universal resonance curves ρ0

s (ε, 0.1). In
particular, density σ1(ε, 0.1) has a prominent resonant shape centered at the poin
t ε = εR1(0.1) = 0.26749, while density σ2(ε, 0.1) has a prominent resonant shape
centered at the point ε = εR2(0.1) = 0.89403. In Fig. 5b is shown density σ1(ε, 0.1)

magnified. Approximate density σ 0
1 (ε, 0.1) is also shown. On this scale there is

virtually no difference between exact density σ1(ε, 0.1) and approximate density
σ 0

1 (ε, 0.1). In Fig. 5c are in the same way compared densities σ2(ε, 0.1) and σ 0
2 (ε, 0.1).

Further, one finds S1(0.1) = ∫
σ1(ε, 0.1)dε = 1 and S2(0.1) = ∫

σ2(ε, 0.1)dε = 1.
Concerning component probabilities Cd,s(0.1) = ∫

ρd,s(ε, 0.1)dε, one has
C1,1(0.1) = 0.94312 and C1,2(0.1) = 0.05688. Density σ1(ε, 0.1) is hence essen-
tially density of the state |�1〉 which interacts with its surrounding. Similarly one
finds C2,2(0.1) = 0.97613 and C2,1(0.1) = 0.02387. Density σ2(ε, 0.1) is hence
essentially density of the state |�2〉 which interacts with its surrounding.

Densities σ1(ε, 0.1) and σ2(ε, 0.1) have only approximately the shape of the uni-
versal resonance curve. This is shown in Fig. 5d which is the same as Fig. 5a, but with
vertical scale highly magnified. On this scale one can see that those densities deviate
from the universal resonance curve. However, since β = 0.1 is small the difference
between exact densities σs(ε, 0.1) and approximate densities σ 0

s (ε, 0.1) is in absolute
scale negligible.

As another example, in Fig. 6 are shown spectral distributions of local states |�s〉
for the value β = 0.4. This value corresponds to the line (b) in Fig. 3. This is relatively
strong coupling and probability densities σs(ε, 0.4) do not resemble universal reso-
nance curves situated at corresponding resonance points. For this value of β standard
perturbation expansion fails. Solving fractional shift eigenvalue equation and using
expressions (26–27) one finds S1(0.4) = ∫

σ1(ε, 0.4)dε = 0.99897 and S2(0.4) =∫
σ2(ε, 0.4)dε = 0.26610. Unlike in the case β = 0.1, those probabilities are less

than one. In the case β = 0.4 in addition to embedded eigenstates combined system
contains an isolated eigenstate |�R2〉 with the eigenvalue εR2(0.4) = 1.24735 (see
Fig. 3). Missing probabilities are due to this eigenstate. Using expressions (18) one
finds wR2,1(0.4) = 0.00103 and wR2,2(0.4) = 0.73390. As required by the com-
pleteness relation (34a), those probabilities satisfy S1(0.4) + wR2,1(0.4) = 1 and
S2(0.4) + wR2,2(0.4) = 1.

In two previous examples probabilities S1(β) and S2(β) for two values of the cou-
pling parameter β (β = 0.1 and β = 0.4) were given. In Fig. 7 are shown those
probabilities as functions of β for the interval β ∈ [0, 2.2]. In particular, in Fig. 7a is
shown probability S1(β) = C1,1(β) + C2,1(β) to find local state |�1〉 in any of the
embedded eigenstates of the combined system. Component probabilities Cd,1(β) =∫ |〈�1 |S| �d(ε, β)〉|2 dε are also shown. In Fig. 7b is shown probability S2(β) =
C1,2(β) + C2,2(β) to find local state |�2〉 in any of the embedded eigenstates of
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Fig. 6 Eigenvalue distributions of local states |�1〉 and |�2〉 in the case β = 0.4. Those distributions
correspond to the line (b) in Fig. 3. In addition to embedded eigenstates, combined system contains an
isolated eigenstate |�R2(0.4)〉with eigenvalue εR2(0.4). (a) Eigenvalue distribution of local state |�1〉. (b)
Eigenvalue distribution of local state |�2〉

the combined system as well as corresponding component probabilities C1,2(β) and
C2,2(β). If β < βR2 combined system has no isolated eigenstates. Hence S1(β) =
S2(β) = 1. In addition, if β is small each probability Ss(β) is dominated by one of its
component probabilities Cd,s(β). This is the case with the point β = 0.1 analyzed in
more details in Fig. 5. As β continuously increases, in the point β = βR2 combined sys-
tem obtains right isolated eigenstate |�R2〉. At this point probability S2(β) drops from
the constant value S2(β) = 1 to S2(βR2+) = 0.18299. This is compensated for by the
probability wR2,2(βR2+) = 0.81701 to find right isolated eigenstate |�R2〉 in the local
state |�2〉 (see Figs. 4b and 7b). However, since probability wR2,1(βR2+) = 0.00026
is very small, there is no noticeable drop in the probability S1(βR2+) at this point (see
Fig. 7a). If β > βR2 standard perturbation expansion fails. This is the case with the
point β = 0.4 analyzed in more details in Fig. 6. In general, probabilities S1(β) and
S2(β) discontinuously change at points β = βR2, β = βL2, β = βL1 and β = βR1
where the combined system, considered as a function of β, acquires isolated eigen-
states.

Completeness relations for the couplings β = 0.1 and β = 0.4 were verified in
Figs. 5 and 6, respectively. Those relations are verified in a systematic way in Fig. 8.
In Fig. 8a probabilities S1(β) to find local state |�1〉 in any of the embedded eigen-
states of the combined system as well as probabilities wR1,1(β), wR2,1(β), wL1,1(β)

and wL2,1(β) to find this state in various isolated eigenstates of the combined system
are plotted as functions of a coupling parameter β. A sum of all those probabilities is
also shown. As required by the completeness relation (34a), this sum equals one for
each value of β. In Fig. 7b are in the same way plotted probabilities S2(β), wR1,2(β),
wR2,2(β), wL1,2(β) and wL2,2(β) that correspond to the local state |�2〉. The sum of
those probabilities also equals one for each value of β. Complete agreement of those
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Fig. 7 Probabilities Ss (β) = C1,s (β)+C2,s (β) to find local state |�s 〉 in any of the embedded eigenstates
of the combined system and corresponding component probabilities Cd,s (β) = ∫ |〈�s |S |�d (ε, β)〉|2 dε.
(a) Probability S1(β) and component probabilities C1,1(β) and C2,1(β). (b) Probability S2(β) and com-
ponent probabilities C1,2(β) and C2,2(β)

probabilities with the requirements of the completeness relations provides a strong
verification of the suggested method. However, this method can be also verified in an
explicit direct way [5,6].

9.2 Example E2

As another example consider the system S a
2 characterized by matrices

A =
(

0.5 −0.25
−0.25 1.6

)
, Sa =

(
1.1 0.1
0.1 1

)
, (47a)

Those matrices are identical to matrices (42a) of the example E1, except for a sin-
gle matrix element of the matrix A. Eigenvalues and corresponding eigenstates of the
system S a

2 are now
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Fig. 8 (a) Verification of the completeness relation for the eigenvalue distribution of a local state |�1〉.
(b) Verification of the completeness relation for the eigenvalue distribution of a local state |�2〉

E1 = 0.39164, E2 = 1.72763, (47b)

|�1〉 =
(

0.91093
0.21799

)
, |�2〉 =

(
0.29604

−0.98064

)
, (47c)

where |�s〉 are orthonormalized according to (1b).
Let the infinite system S b

∞ that interacts with the above system S a
2 contain two

eigenvalue bands in the intervals I1 ≡ [a1, b1] = [−1, 1] and I2 ≡ [a2, b2] = [2, 3],
respectively. Let further this system contain an isolated eigenstate |�0〉 with the eigen-
value λ0 = 1.2. Assume that the characteristic operator f1(ε) which describes the
interaction of the first eigenvalue band with the system S a

2 is given by matrix ele-
ments (43), while the characteristic operator f2(ε) which describes the interaction of
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the second eigenvalue band with the system S a
2 is given by matrix elements

f2(ε) =
⎛

⎝
f (2)
11 (ε) f (2)

12 (ε)

f (2)
21 (ε) f (2)

22 (ε)

⎞

⎠ ≡
⎛

⎝
q(2)

11 (ε) q(2)
12 (ε)

q(2)
21 (ε) q(2)

22 (ε)

⎞

⎠ ·
{

1 if ε ∈ I2
0 otherwise

(48a)

where q(2)
sp (ε) are polynomials

q(2)
11 (ε) = (ε − 2)2 (2ε2 − 14ε + 25

)
,

q(2)
22 (ε) = (ε − 2)2 (ε2 − 8ε + 17

)
, (48b)

q(2)
12 (ε) ≡ q(2)

21 (ε) = (ε − 2)3 (ε − 4) .

Let further the characteristic matrix F(x) which describes the interaction of the eigen-
state |�0〉 with the system S a

2 be given by

F(ε) =
(

0.5 −0.3
−0.3 0.2

)
· δ (ε − λ0) . (49)

In Fig. 9a are shown matrix elements fsp(ε) of the global characteristic matrix
f(ε) = f1(ε) + f2(ε) + F(ε). Local eigenvalues E1 and E2 are also shown. Interac-
tion of the system S a

2 with the system S b
∞ described by this characteristic matrix is

much more complex than in the previous example. There are several new features.
First, the system S b

∞ has two (nonoverlaping) eigenvalue bands in the intervals I1
and I2, respectively. In particular, one has f(ε) ≡ f1(ε) if ε ∈ I1 and f(ε) ≡ f2(ε) if
ε ∈ I2. Second, characteristic matrix f(ε) is not continuous in the point ε = b2 = 3
on the right edge of the interval I2. Third, local eigenvalue E2 /∈ D is outside the
range D = I1 ∪ I2, while in the previous example both eigenvalues of the isolated
system S a

ρ were contained inside the range D. Finally, the system S b
∞ has an isolated

eigenvalue at the point ε = λ0 = 1.2 /∈ D and in this point characteristic matrix f(ε)
diverges.

Eigenvalues ξ1(ε) and ξ2(ε) of f(ε) are shown in Fig. 9b. As required, those eigen-
values are nonnegative and they vanish outside the range D and outside the point
ε = λ0. Rank of matrix f(ε) equals two for each interior point ε ∈ D, except for the
critical point εc = 0.38197 ∈ D where rank(f(εc)) = 1. This is the same critical
point as in the example E1. In addition, this rank equals two in the point ε = λ0.

Consider next global derived matrix ω(ε) = ω1(ε) + ω2(ε) + �(ε). Matrix ele-
ments of the derived matrix ω1(ε) associated with the eigenvalue band ν = 1 are
given by expressions (45). Since matrix elements of the characteristic matrix f2(ε) are
polynomials inside the interval I2, one can again use expression (11) to obtain:

ω
(2)
11 (ε) = q(2)

11 (ε) ln

∣∣∣∣
ε − 2

ε − 3

∣∣∣∣ − g(2)
11 (ε),

ω
(2)
22 (ε) = q(2)

22 (ε) ln

∣∣∣∣
ε − 2

ε − 3

∣∣∣∣ − g(2)
22 (ε),
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Fig. 9 Example E2. (a) Matrix elements fsp(ε) of the characteristic matrix f(ε). Those matrix elements

vanish outside the range D ≡ I1 ∪ I2 and excluding the point ε = λ0. Eigenvalue E1 of the local system S a
2

is inside the range D while eigenvalue E2 is outside this range. (b) Eigenvalues ξs (ε) of the characteristic
matrix

ω
(2)
12 (ε) ≡ ω

(2)
21 = q(2)

12 (ε) ln

∣∣∣∣
ε − 2

ε − 3

∣∣∣∣ − g(2)
12 (ε), (50a)

where q(2)
sp (ε) are polynomials (48b), while g(2)

sp (ε) are polynomials:

g(2)
11 (ε) = 2ε3 − 17ε2 + 140

3
ε − 121

3
,

g(2)
22 (ε) = ε3 − 19

2
ε2 + 88

3
ε − 109

4
, (50b)

g(2)
12 (ε) ≡ g(2)

21 (ε) = ε3 − 15

2
ε2 + 52

3
ε − 157

12
.

Since f2(ε) is nonzero in the point ε = b2 = 3 on the right edge of the interval I2,
those matrix elements diverges in this point [8]. Finally, using (12) and (49) one finds
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Fig. 10 Example E2. (a) Matrix elements ωsp(ε) of the derived matrix ω(ε). (b) Eigenvalues µs (ε) of
the derived matrix ω(ε)

derived matrix �(ε)

�(ε) =
(

0.5 −0.3
−0.3 0.2

)
· 1

ε − λ0

{
1 if ε 	= λ0
0 if ε = λ0

(51)

In Fig. 10a are shown matrix elements ωsp(ε) of the global derived matrix ω(ε) =
ω1(ε) + ω2(ε) + �(ε), while in Fig. 10b are shown eigenvalues µ1(ε) and µ2(ε)

of this matrix. Matrix elements ωsp(ε) diverge in a point ε = b2 where characteris-
tic matrix f(ε) is discontinuous and their ε → λ0 limits diverge in a point ε = λ0
where a system S b

∞ (surrounding) has an isolated eigenvalue. Eigenvalues µ1(ε) and
µ2(ε) of ω(ε) have the same properties in those points. In accord with the requirement
(14b), both eigenvalues are decreasing functions of ε for each ε /∈ D = I1 ∪ I2 and
ε 	= λ0. However, in the interval I1 as well as in the interval I2 those eigenvalues can
be decreasing as well as increasing functions of ε. In the point ε = λ0 those eigen-
values are not continuous and in this point they have the values µ1(λ0) = 0.27462 and
µ2(λ0) = 1.71374, respectively (see Fig. 10b). The same general behavior applies to
diagonal matrix elements ω11(ε) and ω22(ε) of the derived matrix ω(ε) (see Fig. 10a).
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Fig. 11 Eigenvalues εr (β) of the generic equation considered as functions of the coupling β. Eigenvalues
inside the range D are resonant points, while eigenvalues outside this range are isolated eigenvalues of the
combined system. Eigenvalue distributions of local states |�s 〉 for the coupling β corresponding to the line
(a) is shown in Fig. 15

Generic eigenvalue equation (15a) produces all isolated eigenstates and all reso-
nant points of the combined system. In the case of a two dimensional system S a

2 this
equation reduces to the Eqs. 36 and 37. Solutions of the Eq. 36 of a type ε = ε(β) are
shown in Fig. 11. There are 12 such solutions: εR1(β), εR2(β), ε1(β), ε2(β), εL1(β),
εL2(β), λ1(β), λ2(β), E1(β), E2(β), d1(β) and d2(β). If β = 0 eigenvalues of the
generic equation coincide with local eigenvalues. In particular, one has E1(0) = E1
and E2(0) = E2. In addition, generic equation has two eigenvalues that in a β → 0
limit coincide with isolated eigenvalue λ0 of the S b

∞ system. Those are eigenvalues
λ1(β) and λ2(β):

lim
β→0

λ1(β) = lim
β→0

λ2(β) = λ0. (52)

Consider eigenvalues E1(β) and E2(β) in more details. Since E1(0) ∈ D, for small
β eigenvalue E1(β) is contained in the range D. It is hence a resonant point. Using
expression (38) one finds that this is true for each β, however large. On the other
hand, since E2(0) /∈ D for small β one has E2(β) /∈ D. This eigenvalue is hence an
isolated eigenvalue of the combined system. However, if the coupling β is as strong
as β > βE2 one has E2(β) ∈ D and this eigenvalue becomes a resonant point.
In the point β = βE2 one has ε = a2 = 2. Inserting this value into (38a) one finds
βE2 = 0.92203.

Consider next eigenvalues εL1(β), εL2(β), ε1(β) and ε2(β). Eigenvalues εL1(β)

and ε1(β) are two branches of one and the same analytic function β = β1(ε), while
εL2(β) and ε2(β) are two branches of another analytic function β = β2(ε). One can
analyze those functions in a form β = β1(ε) and β = β2(ε) using explicit expressions
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(38). Condition dβ1(ε)/dε = 0 determines the point (β1, ε1) = (0.75300,−0.76789)

while condition dβ2(ε)/dε = 0 determines the point (β2, ε2) = (0.52241,−0.66072).
Eigenvalues εL1(β) and ε1(β) exist only if β ≥ β1 while eigenvalues εL2(β) and ε2(ε)

exist only if β ≥ β2. For each β (where defined) eigenvalues ε1(β) and ε2(ε) are inside
the range D and hence these eigenvalues are resonant points. Concerning eigenvalues
εL1(β) and εL2(β), for small β those eigenvalues are resonant points. However, if the
coupling is as strong as β > βL2 eigenvalue εL2(β) becomes left isolated eigenvalue
of the combined system, while if β > βL1 eigenvalue εL1(β) becomes another left
isolated eigenvalue of the combined system. As β > βL1 further increases, isolated
eigenvalues εL1(β) and εL2(β) continue to decrease. This is in accord with expressions
(14) and (17) that imply ∂εL/∂β < 0 for each left isolated eigenvalue εL < a1 = −1
(extreme left subinterval Īle f t of D is Īle f t = (−∞, a1)). Hence for each β > βL1
combined system has two left isolated eigenvalues. In the points βL1 and βL2 one has
ε = a1 = −1. In analogy to (46) one finds βL2 = 0.69110 and βL1 = 0.98637.

Concerning eigenvalues εR1(β), εR2(β), d1(β) and d2(β), one finds that εR1(β)

and εR2(β) are right isolated eigenvalues while d1(β) and d2(β) are resonant points.
In analogy to the left isolated eigenvalues, as β increases right isolated eigenvalues
εR1(β) and εR2(β) monotonically increase. Hence for sufficiently big β combined
system has two right isolated eigenvalues. For small β those eigenvalues asymptoti-
cally approach the value ε = b2 = 3. For example, if β ≈ 0.94 one has εR1(β) ≈
3.001 and d1(β) ≈ 2.999, while if β decreases to β = 0.70167 one has εR1(β) ≈
3.000001 and d1(β) ≈ 2.999999. Similarly, if β ≈ 0.278 one has εR2(β) ≈ 3.001 and
d2(β) ≈ 2.999, while if β decreases to β = 0.19069 one has εR2(β) ≈ 3.000001 and
d2(β) ≈ 2.999999. This asymptotic behavior is due to the fact that matrix elements
of the characteristic operator f(ε) are discontinuous in the point ε = b2 = 3 [8].

Consider finally eigenvalues λ1(β) and λ2(β). According to (52), in a limit β → 0
those eigenvalues converge to the isolated eigenvalue λ0 = 1.2 of the infinite system
S b

∞. Since λ0 /∈ D, for sufficiently small β those eigenvalues are isolated eigenvalues
of the combined system. One finds that this is true for each β, however large. In
order to illustrate a nontrivial shape of those eigenvalues, in Fig. 12 are shown those
eigenvalues with amplified ε-coordinate.

In conclusion, for sufficiently big β combined system has 6 isolated eigenvalues,
εR1(β), εR2(β), εL1(β),εL2(β), λ1(β) and λ2(β). In addition, for each β < βE2 there
is isolated eigenvalue E2(β). Note that isolated eigenvalues εL1(β), εL2(β), εR1(β)

and εR2(β) do not exist in the point β = 0. Hence no perturbation expansion method
can reproduce those eigenvalues.

Once above eigenvalues are obtained as solutions to (36), one can derive corre-
sponding isolated eigenstates according to (37) and (15b,c). Those eigenstates deter-
mine all related properties of the open system S a

2 . In particular, probabilities wr,s and
wr = wr,1 +wr,2 are given by (18). Probabilities for right and left isolated eigenstates
are shown in Fig. 13. In Fig. 13a are shown probabilities wR1,s ≡ |〈�s |S| �R1〉|2 to
find right isolated eigenstate |�R1〉 in a local state |�s〉, as well as global right proba-
bility wR1 = wR1,1+wR1,2 to find right isolated eigenstate |�R1〉 in a local system S a

2 .
Since the characteristic operator f(ε) is discontinuous in the point ε = b2 where right
isolated eigenstate |�R1〉 emerges, those probabilities are continuous functions of β.
However, those functions are not analytic [8]. This is qualitatively different behavior
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Fig. 12 Eigenvalues λ1(β) and λ2(β) from Fig. 11 highly magnified

from probabilities shown in Fig. 4 which are all identically zero for small β and which
display a sudden jump from zero to a finite nonzero value at some critical point (βR1,
βR2, βL1 or βL2). Similar behavior applies to probabilities wR2 = wR2,1 +wR2,2 and
wR2,s = |〈�s |S| �R2〉|2 associated with right isolated eigenstate |�R2〉 (see Fig. 13b).
Those probabilities are also continuous functions of a coupling parameter β. However,
probabilities associated with left isolated eigenstates |�L1〉 and |�L2〉 that emerge at
the point ε = a1 where characteristic operator f(ε) is continuous, have a sudden jump
from zero to a finite nonzero value. In particular, left isolated eigenvalue εL1(β) exists
only if β > βL1 = 0.98637. As β < βL1 continuously increases, in a point β = βL1
probabilities wL1 = wL1,1+wL1,2 and wL1,s = |〈�s |S| �L1〉|2 discontinuously jump
from zero to a finite nonzero values wL1(βL1+) = 0.14935, wL1,1(βL1+) = 0.11491
and wL1,2(βL1+) = 0.03444, respectively (Fig. 13c). The same applies to another left
isolated eigenstate |�L2〉. This eigenstate exists only if β > βL2 = 0.69110. At this
point probabilities wL2 = wL2,1+wL2,2 and wL2,s = |〈�s |S| �L2〉|2 discontinuously
jump from zero to a finite nonzero values wL2(βL2+) = 0.17876, wL2,1(βL1+) =
0.09566 and wL2,2(βL1+) = 0.08310, respectively (see Fig. 13d).

Probabilities associated with isolated eigenstates |�λ1〉, |�λ2〉 and |�E2〉 are shown
in Fig. 14. Spectral distributions of local states |�s〉 corresponding to the line (a) in this
figure are shown in Fig. 15. If β = 0 eigenstates |�λ1〉 and |�λ2〉 coincide with isolated
eigenstate |�0〉 of the infinite system S b

∞. This eigenstate has no Xa
2 component and

hence all corresponding probabilities vanish in a point β = 0 (see Fig. 14a and b). As
β increases, eigenstate |�0〉 splits into two eigenstates |�λ1〉 and |�λ2〉 with nonvan-
ishing Xa

2 components. Since those probabilities are continuous functions of β, they
are small if β is small. In Fig. 14a are shown probabilities wλ1,s ≡ |〈�s |S| �λ1〉|2
to find isolated eigenstate |�λ1〉 in a local state |�s〉, as well as global probability
wλ1 = wλ1,1 +wλ1,2 to find isolated eigenstate |�λ1〉 in a local system S a

2 . In Fig. 14b
are shown analogous probabilities for another isolated eigenstate |�λ2〉. Probabilities
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Fig. 13 Probabilities wr,s (β) ≡ |〈�s |S |�r 〉|2 to find isolated eigenstate |�r 〉 in a local state |�s 〉 and
probabilities wr = wr,1 + wr,2 to find this eigenstate in the system S a

2 for left and right eigenstates
of the combined system. (a) Probabilities corresponding to the eigenstate |�R1〉. (b) Probabilities corre-
sponding to the eigenstate |�R2〉. (c) Probabilities corresponding to the eigenstate |�L1〉. (d) Probabilities
corresponding to the eigenstate |�L2〉
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Fig. 14 Probabilities wr,s (β) for the remaining three isolated eigenstates |�λ1〉, |�λ2〉 and |�E2〉. (a) Prob-
abilities corresponding to the eigenstate |�λ1〉. (b) Probabilities corresponding to the eigenstate |�λ2〉. (c)
Probabilities corresponding to the eigenstate |�E2〉

wE2,s ≡ |〈�s |S| �E2〉|2 and wE2 = wE2,1+wE2,2 associated with the isolated eigen-
state |�E2〉 display qualitatively different behavior (see Fig. 14c). Since for β = 0 this
eigenstate coincides with local eigenstate |�2〉 with the eigenvalue E2(0) ≡ E2 /∈ D,
one has wE2,1(0) = 0, wE2,2(0) = 1 and wE2(0) = 1. Hence for small β one has
wE2,1(β) ≈ 0, wE2,2(β) ≈ 1 and wE2(β) ≈ 1. As β increases, local state |�2〉 is
perturbed by the interaction with the system S b

∞, and this state transforms into the
isolated eigenstate |�E2〉. If the interaction is as strong as βE2 = 0.92203, eigenvalue
E2(β) enters the range D and at this point there is no more isolated eigenstate |�E2〉.
Accordingly, all corresponding probabilities drop to zero.
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Fig. 15 Eigenvalue distributions of local states |�1〉 and |�2〉 in the case β = 0.1. Those distributions
correspond to the line (a) in Figs. 11, 12 and 14. (a) Eigenvalue distribution of the state |�1〉. (b) Probability
density σ1(ε, 0.1) highly magnified. (c) Difference between probability density σ1(ε, 0.1) and approximate
density ρ0

1 (ε, 0.1) highly magnified. (d) Spectral distribution of local state |�2〉 with probability density
σ2(ε, 0.1) highly magnified. Probabilities not in scale

Consider now embedded solutions of the combined system. One finds eigenvalues
Xd(ε) and Xa

ρ-components
∣∣�a

d (ε)
〉
of the embedded eigenstates |�d(ε)〉 using expres-

sions (39–41) and (24). In Fig. 15 are shown spectral distributions of local states |�s〉
for the coupling β = 0.1. This coupling corresponds to the line (a) in Figs. 11, 12 and
14. This is relatively weak coupling and since E1(0.1) = 0.39872 ∈ D, probability
density σ1(ε, 0.1) to find local state |�1〉 with the eigenvalue ε ∈ D, i.e. to find this
state either in the embedded eigenstate |�1(ε, 0.1)〉 or in the embedded eigenstate
|�2(ε, 0.1)〉 has a prominent resonance shape at this point (Fig. 15a). Unlike in the
example E1 where total contribution from the density σ1(ε, 0.1) equals S1(0.1) = 1,
one now finds S1(0.1) = ∫

σ1(ε, 0.1)dε = 0.99520 < 1. In the case β = 0.1 in addi-
tion to embedded eigenstates combined system has isolated eigenstates |�λ1(0.1)〉,
|�λ2(0.1)〉 and |�E2(0.1)〉 with eigenvalues λ1(0.1) = 1.20050, λ2(0.1) = 1.19578
and E2(0.1) = 1.73998, respectively (see Fig. 11). Missing contribution is due to
those isolated eigenstates. One finds wλ1,1(0.1) = 0.00128, wλ2,1(0.1) = 0.00349
and wE2,1(0.1) = 0.00003. The sum of all those probabilities equals one in com-
plete agreement with the completeness relation (34a). Since C1,1(0.1) = 0.98780
and C2,1(0.1) = 0.00758, contribution S1(0.1) = C1,1(0.1) + C2,1(0.1) is mainly
due to the embedded eigenstate |�1(ε, 0.1)〉 with relatively negligible contribution
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Fig. 16 Probabilities Ss (β) = C1,s (β)+C2,s (β) to find local state |�s 〉 in any of the embedded eigenstates
of the combined system and corresponding component probabilities Cd,s (β) = ∫ |〈�s |S |�d (ε, β)〉|2 dε.
(a) Probability S1(β) and component probabilities C1,1(β) and C2,1(β). (b) Probability S2(β) and com-
ponent probabilities C1,2(β) and C2,2(β)

from embedded eigenstate |�2(ε, 0.1)〉. Resonant shape σ1(ε, 0.1) is made manifest
in Fig. 15b where density σ1(ε, 0.1) is shown magnified. In Fig. 15c is shown the dif-
ference σ1(ε, 0.1) − ρ0

1 (ε, 0.1) between this density and universal resonance curve
ρ0

1 (ε, 0.1) as given by (32b). This difference is relatively small and density σ1(ε, 0.1)

is hence well approximated with this universal resonance curve.
In Fig. 15d is shown eigenvalue distribution of another local state |�2〉. Concern-

ing probability S2(0.1) to find this state in any of the embedded eigenstates, one finds
S2(0.1) = ∫

σ2(ε, 0.1)dε = 0.02258. This probability is rather small since the eigen-
value E2(0.1) = 1.73995 /∈ D of the perturbed eigenstate |�E2〉 is outside the range
D. Corresponding density σ2(ε, 0.1) has no resemblance to the universal resonance
curve (see Fig. 15d). Spectral distribution of the local state |�2〉 is essentially repre-
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Fig. 17 (a) Verification of the completeness relation for the eigenvalue distribution of a local state |�1〉.
(b) Verification of the completeness relation for the eigenvalue distribution of a local state |�2〉

sented by the isolated eigenstate |�R2(0.1)〉 with the eigenvalue E2(0.1) /∈ D and with
the corresponding probability wE2,2(0.1) = 0.96415 < 1. This distribution, in addi-
tion to a dominant contribution from the isolated eigenstate |�E2(0.1)〉 and to a con-
tribution S2(0.1) from embedded eigenstates, contains also some minor contributions
from isolated eigenstates |�λ1(0.1)〉 and |�λ2(0.1)〉. One finds wλ1,2(0.1) = 0.00078
and wλ2,2(0.1) = 0.01259. As required by the completeness relation, the sum of all
those contributions equals one.

In Fig. 16 are shown probabilities Sd(β) = Cd,1(β) + Cd,2(β) associated with
embedded eigenstates |�d(ε, β)〉 as functions of β for the interval β ∈ [0, 2.2]. Com-
ponent probabilities Cd,s(β) are also shown. Those quantities are discontinuous in the
points β = βL2, β = βL1 and β = βE2 where the combined system, considered as
a function of β, either acquires or looses isolated eigenstates. Since E1 ∈ D while
E2 /∈ D, for small β one has S1(β) ≈ 1 and S2(β) ≈ 0. This is the region where
perturbation expansion can be applied. However for large β, especially for β > βL2,
perturbation expansion breaks.

Completeness relations are verified in Fig. 17. In Fig. 17a probabilities S1(β), wR1,1
(β), wR2,1(β), wL1,1(β),wL2,1(β), wλ1,1(β), wλ2,1(β) and wE2,1(β) associated with
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a local state |�1〉 are plotted as functions of a coupling parameter β. A sum of all
those probabilities is also shown. As required by the completeness relation, this sum
equals one for each value of β. In Fig. 17b are in the same way analyzed probabilities
associated with the local state |�2〉.

10 Conclusions

Exact nonperturbative method for the description of an open quantum system S a
ρ that

interacts with the surrounding (an infinite quantum system S b
∞) is presented. Sys-

tem S a
ρ is an arbitrary finite-dimensional quantum system that contains ρ eigenvalues

Es and ρ corresponding eigenstates |�s〉. Those eigenstates span the space Xa
ρ . Sys-

tem S b
∞ is an arbitrary infinite-dimensional quantum system. In general, this system

may contain discrete eigenvalues λi as well as several eigenvalue bands in intervals
Iν = [aν, bν] (including the possibility bν = ∞). The union D = ∪ν Iν of all those
intervals contains all continuous eigenvalues of S b

∞. Discrete eigenvalues λi of S b
∞

may be contained in D as well as in its complement D. The set of all eigenstates of
Sb∞ spans an infinite dimensional space Xb∞.

In order to describe properties of the open system S a
ρ it is sufficient to know

only Xa
ρ-components of the properly normalized eigenstates of the combined system

S∞ ≡ S a
ρ ⊕ S b

∞. Xb∞-components of those eigenstates are not required. One finds
that combined system S∞ contains two qualitatively different types of eigenvalues and
eigenstates. This system may contain isolated eigenvalues εr with the corresponding
eigenstates |�r 〉 as well as embedded eigenvalues ε with the corresponding eigenstates
|�(ε, . . .)〉.

There are two types of isolated eigenvalues εr and corresponding eigenstates.
If εr differs from all discrete eigenvalues of S b

∞ (εr /∈ {λ j }) it is cardinal, otherwise
(εr ∈ {λ j }) it is singular. Most important and usually most numerous are isolated
cardinal eigenstates. Those eigenstates contribute to the properties of the open sys-
tem S a

ρ . On the other hand, isolated singular eigenstates do not contribute to those
properties, except for the so called weakly singular eigenstates which are quite rare.

In addition to isolated eigenstates with isolated eigenvalues εr , each ε ∈ D is also
an eigenvalue of the combined system. This eigenvalue is a part of a continuous band
of eigenvalues and the corresponding eigenstates |�(ε, . . .)〉 are normalized to a δ-
function. Those are embedded eigenstates of the combined system. With each embed-
ded eigenstate is associated a fractional shift x(ε). This quantity satisfies x(ε) ∈
[1 − ρ, 1]. However, fractional shift can be confined to the interval [0, 1) which is
a principal value of fractional shift. Embedded eigenstates can be also singular and
cardinal. One finds that embedded singular eigenstates have fractional shift x(ε) = 0,
while embedded cardinal eigenstates have fractional shift x(ε) 	= 0. For each ε ∈ D
combined system may have an infinite number of embedded singular eigenstates, while
the number of embedded cardinal eigenstates is at most ρ. Embedded cardinal eigen-
states can be hence labeled with discrete index d as |�d(ε)〉 where for each ε ∈ D this
index can assume at most ρ values. To the properties of the open system S a

ρ contribute
only embedded cardinal eigenstates. In conclusion, in order to describe open quantum
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system S a
ρ it is sufficient to know Xa

ρ-components of all isolated and of all embedded
cardinal eigenstates of the combined system.

Two eigenvalue equations, generic eigenvalue equation and fractional shift eigen-
value equation are derived. Both are ρ × ρ eigenvalue equations and they both act in
the ρ-dimensional space Xa

ρ associated with the system S a
ρ . First equation determines

all isolated cardinal eigenvalues and all Xa
ρ-components of the corresponding eigen-

states of the combined system. Second equation determines all Xa
ρ-components of the

embedded cardinal eigenstates of the combined system. In almost all cases those two
equations provide a complete description of the open system S a

ρ .
Generic equation is a nonlinear eigenvalue equation. Each eigenvalue εr /∈ D of

this equation is an isolated cardinal eigenvalue of the combined system. Once this
eigenvalue is known, one easily obtains the corresponding isolated eigenstate |�r 〉.
Concerning eigenvalues εr ∈ D of this equation, those eigenvalues are resonant
points. A special type of resonant points, so-called anomal points are shown to be
also isolated eigenvalues of the combined system. Generic eigenvalue equation thus
provides all isolated cardinal eigenvalues and eigenstates of the combined system.

For each ε ∈ D fractional shift equation is a linear eigenvalue equation. This equa-
tion is related to embedded cardinal solutions of the combined system. In particular,
Xa

ρ-component
∣∣�a

d (ε)
〉

of embedded cardinal eigenstate |�d(ε)〉 is given in terms of
the solution to this equation.

Since the suggested method produces correct results however strong the interaction
between quantum systems S a

ρ and S b
∞, it can be applied to all those cases where the

standard perturbation expansion fails. If this interaction is weak, one obtains stan-
dard results known from the perturbation expansion approach. In particular, due to
the interaction with the infinite system Sb∞, each eigenvalue Es /∈ D of the system
S a

ρ that is contained outside the eigenvalue range D of this infinite system moves to
a new position εs(β), and it remains sharp. Each eigenvalue Es ∈ D of the system
S a

ρ that is contained inside this eigenvalue range also moves to a new position εs(β).
However, since Es ∈ D this shifted eigenvalue is usually not sharp and it acquires a
finite width. In particular, if Es is nondegenerate shifted eigenvalue εs ∈ D usually
acquires the shape of the universal resonance curve with a finite width εs . Only in
a special case when εs = εa is an anomal point, the width εs drops to zero, and in
this case one has one or several isolated solutions in this point [8]. If the interaction
between the systems S a

ρ and S b
∞ is strong this simple picture is destroyed, and one

has much more complex behavior. Various density distributions in the case of a strong
interaction have no resemblance to the universal resonance curve. In addition, in this
case combined system usually has some isolated eigenstates which can not be inter-
preted as perturbed eigenstates of S a

ρ or as perturbed eigenstates of S b
∞. In the case

of such strong interactions standard perturbation expansion fails.
The suggested method is illustrated with two examples. In the first example infinite

system S b
∞ contains a single eigenvalue band in the interval I1 ≡ [−1, 1]. In the

second example which is much more complex infinite system S b
∞ contains two eigen-

value bands, one eigenvalue band in the interval I1 ≡ [−1, 1] and another eigenvalue
band in the interval I2 ≡ [2, 3]. In addition, this system contains an isolated eigenstate
with the eigenvalue λ0 = 1.2. It is shown that all relevant probabilities and density
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distributions satisfy completeness relation (34a). This relation is verified for a wide
range of a parameter β, including very weak as well as extremely strong interactions.
The agreement of those probabilities and density distributions with the completeness
relation provides a strong verification of the suggested method.

Appendices

A Solution of a finite combined system Sn+ρ

Let S b
n be n-dimensional quantum system described by the eigenvalue equation

B |�i 〉 = λi |�i 〉, i = 1, . . . , n, (A1a)

where B is a Hermitian operator acting in the n-dimensional space Xb
n . Eigenstates

|�i 〉 ∈ Xb
n of B can be orthonormalized according to

〈
�i |� j

〉 = δi j . (A1b)

Let the system S b
n interact with the system S a

ρ described by the eigenvalue equa-
tion (1a). This interaction can be written in the form βV where V is a Hermitian
operator that connects the states |�s〉 ∈ Xa

ρ with the states |�i 〉 ∈ Xb
n and where

β ≥ 0 is a coupling parameter. Combined system Sn+ρ ≡ S a
ρ ⊕ S b

n that includes this
interaction is described by the generalized eigenvalue equation

C |�k〉 = εkS |�k〉, k = 1, . . . , n + ρ, (A2a)

where

C = A + B + βV, S = Sa + Ib. (A2b)

and where Ib is a unit operator in Xb
n .

Eigenstates |�k〉 of the eigenvalue equation (A2a) can be orthonormalized accord-
ing to

〈�k |S| �l〉 = δkl , (A3a)

Each such eigenstate is a linear combination

|�k 〉 = ∣∣�a
k 〉 +

∣∣∣�b
k 〉, (A3b)

where

∣∣�a
k

〉 ∈ Xa
ρ,

∣∣∣�b
k

〉
∈ Xb∞. (A3c)

123



680 J Math Chem (2009) 45:627–701

If the solution to the system S b
n is known, the solution to the combined system

Sn+ρ can be obtained in a compact form that does not require diagonalization of a
huge (n + ρ) × (n + ρ) eigenvalue equation (A2a) [9].

Define Hermitian operator �(ε) [9]

�(ε) =
n∑

i(λi 	=ε)

V |�i 〉 〈�i | V
ε − λi

, (A4a)

The summation in this expression is performed over all indices i such that λi 	= ε.
If ε differs from all unperturbed eigenvalues λi (ε /∈ {λ j }), this summation contains
all n terms.

Operator �(ε) incorporates essential features of the interaction of the system S b
n

with the system S a
ρ . However, this operator has nonvanishing matrix elements only in

the space Xa
ρ . In particular, in the base {|s〉} ∈ Xa

ρ this operator is a ρ × ρ Hermitian
matrix with matrix elements �sp(ε)

�sp(ε) =
n∑

i(λi 	=ε)

〈s |V| �i 〉 〈�i |V| p〉
ε − λi

, s, p = 1, . . . , ρ. (A4b)

It is convenient to distinguish cardinal (εk /∈ {λi }) and singular (εk ∈ {λi }) eigen-
values and corresponding eigenstates of the combined system Sn+ρ [9].

A.1 Cardinal solutions of Sn+ρ

Eigenvalue εk /∈ {λi } is a (cardinal) eigenvalue of the combined system if and only if
it is an eigenvalue of the eigenvalue equation [9]

[
β2�(εk) + A

]
|θk〉 = εkSa |θk〉, εk /∈ {λi }, (A5a)

In the base {|s〉} eigenvalue equation (A5a) is a ρ × ρ matrix eigenvalue equation.
This equation has a nontrivial solution (|θk〉 	= 0) if and only if determinant of the
system vanishes:

|H(εk)| = 0, (A5b)

where

H(ε) ≡ β2�(ε) + A − ε Sa . (A5c)

and where A and Sa are ρ × ρ matrices with matrix elements Asp = 〈s |A| p〉 and
Sa

sp = 〈s |Sa | p〉, respectively, while �(ε) is a ρ × ρ matrix with matrix elements
(A4b).
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Expression (A5b) produces all cardinal eigenvalues of the combined system. Once
eigenvalue εk is obtained as a solution of (A5b), component

∣∣�a
k

〉 ∈ Xa
ρ of the corre-

sponding eigenstate |�k〉 equals

∣∣�a
k

〉 = 1√
Qk

|θk〉, (A6a)

where

Qk = 〈
θk

∣∣Sa
∣∣ θk

〉 + β2
n∑

i

〈θk |V| �i 〉 〈�i |V| θk〉
(εk − λi )

2 , (A6b)

and where |θk〉 is an eigenstate of (A5a) corresponding to the eigenvalue εk . Compo-
nent

∣∣�a
k

〉
determines the corresponding Xb

n-component
∣∣�b

k

〉
according to

∣∣∣�b
k

〉
= β

n∑

i

〈
�i |V| �a

k

〉

εk − λi
|�i 〉 . (A6c)

Normalization constant Qk ensures that the eigenstate |�k〉 is normalized according
to the metrics induced by the operator S = Sa + Ib. Hence 〈�k |S| �k〉 = 1 in accord
with (A3a). Concerning the property 〈�k |S| �l〉 = 0 (k 	= l), this is automatically
satisfied if εk 	= εl [9]. However, if εk = εl corresponding eigenstates are degenerate
and in this case expression (A3a) should be enforced by some standard procedures
such as Gramm–Schmidt orthonormalization [10].

Expressions (A5) and (A6) produce all cardinal solutions of the eigenvalue equation
(A2).

A.2 Singular solutions of Sn+ρ

Let λ j be η j -degenerate eigenvalue of the system S b
n and let

∣∣� jm
〉

(m = 1, . . . , η j )

be the corresponding eigenstates orthonormalized according to (A1b). Projection oper-
ator on the η j -dimensional space Xbj

η j spanned by those eigenstates is

Pbj =
η j∑

m

∣∣� jm
〉 〈

� jm
∣∣. (A7)

Eigenvalue εk ≡ λ j is a (singular) eigenvalue of the combined system if and only
if it satisfies [9]

H(λ j )

∣∣∣θaj
〉
= −βVPbj

∣∣∣φbj
〉
, (A8a)

Pbj V
∣∣∣θaj

〉
= 0. (A8b)
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Since operator H(λ j ) acts in the space Xa
ρ while Pbj is a projection operator on the

space Xbj
η j , one has

∣∣θaj
〉 ∈ Xa

ρ and
∣∣φbj

〉 ∈ Xbj
η j .

In the base
{|s〉 ,

∣∣� jm
〉}

(s = 1, . . . , ρ; m = 1, . . . , η j ) Eq. (A8) combine to a
single (ρ + η j ) × (ρ + η j ) matrix equation. This equation has a nontrivial solution if
and only if determinant of the system vanishes:

∣∣∣∣
H(λ j ) βVPbj

βPbj V 0

∣∣∣∣ = 0, (A9a)

where H(λ j ) is a ρ × ρ matrix defined by (A5c), W( j) ≡ VPbj is a ρ × η j matrix
with matrix elements

W ( j)
sm = 〈

s |V| � jm
〉
, s = 1, . . . , ρ, m = 1, . . . , η j . (A9b)

while 0 is a η j × η j null matrix. Since V and Pbj are Hermitian, one has Pbj V =
(
VPbj

)+ = W( j)+.
If λ j satisfies (A9a), there is at least one nontrivial solution to (A8). In this case

Xa
ρ-component of the corresponding normalized eigenstate

∣∣� j
〉 = ∣∣�aj

〉 + ∣∣�bj
〉

equals [9]

∣∣∣�aj
〉
= 1√

Q

∣∣∣θaj
〉
, (A10a)

where

Q =
〈
θaj

∣∣Sa
∣∣ θaj

〉
+

〈
φbj

∣∣∣φbj
〉
+ β2

n∑

i(λi 	=λ j )

〈
θaj |V| �i

〉 〈
�i |V| θaj

〉

(
λ j − λi

)2 , (A10b)

Corresponding Xb
n-component equals

∣∣∣�bj
〉
= 1√

Q

⎡

⎣
∣∣∣φbj

〉
+ β

∑

i(λi 	=λ j )

〈
�i |V| θaj

〉

λ j − λi
|�i 〉

⎤

⎦ . (A10c)

Expressions (A8) and (A10) produce all singular solutions of the eigenvalue equa-
tion (A2).

It is convenient to distinguish two kinds of singular eigenstates. We call each singu-
lar eigenstate that satisfies

∣∣θaj
〉 = 0 strongly singular, otherwise it is weakly singular.

123



J Math Chem (2009) 45:627–701 683

A.2.1 Strongly singular solutions of Sn+ρ

According to (A8) and (A10), each strongly singular eigenstate with the eigenvalue
εk ≡ λ j is given by

∣∣∣� j
〉
≡

∣∣∣�bj
〉
= 1

√〈
φbj |φbj

〉
∣∣∣φbj

〉
. (A11a)

where
∣∣φbj

〉 ∈ Xb
n satisfies

VPbj
∣∣∣φbj

〉
= 0. (A11b)

The number of such eigenstates depends on the properties of a ρ × η j matrix
W( j) ≡ VPbj . In a base

{|s〉, ∣∣� jm
〉}

expression (A11b) is a homogenous set of ρ

linear equations in η j unknowns:

η j∑

m

cm
〈
s |V| � jm

〉 = 0, s = 1, . . . , ρ, (A11c)

where

∣∣∣φbj
〉
=

η j∑

m

cm
∣∣� jm

〉
. (A11d)

and where cm are unknown coefficients.
Let r j be rank [10] of W( j). One has r j ≤ ρ and r j ≤ η j [10]. If η j > r j expression

(A11c) has (η j − r j ) linearly independent solutions and in this case combined system
has (η j −r j ) strongly singular eigenstates

∣∣� j
〉
with the eigenvalue λ j . In particular, if

η j > ρ combined system has at least (η j −ρ) strongly singular eigenstates. However,
if η j = r j combined system has no strongly singular eigenstate with this eigenvalue.

The set of all strongly singular eigenstates with the eigenvalue λ j spans a (η j −r j )-

dimensional space Xbj−
η j −r j

, subspace of Xbj
η j . According to (A11b), this space is a

nullspace [10] of W( j). Let Xbj+
r j be a complement of Xbj−

η j −r j
in Xbj

η j . This space is

r j -dimensional and it contains all vectors in Xbj
η j that are orthogonal to Xbj−

η j −r j
. By

definition, this is a column space [10] of W( j). Those two spaces satisfy

Xbj−
η j −r j

⊕ Xbj+
r j = Xbj

η j
, (A12a)

The space Xbj+
r j is an active subspace of Xbj

η j . Each state in this space interacts with

the system S a
ρ (i.e. it interacts with at least one state in Xa

ρ). On the other hand, Xbj−
η j −r j

is a passive subspace of X jb
η j . This space contains no state that interacts with S a

ρ .
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In addition to active and passive spaces Xbj+
r j and Xbj−

η j −r j
which are associated with

the eigenvalue λ j , one can consider global active space Xb+ = ⊕ j Xbj+
r j (orthogonal

sum of all active spaces Xbj+
r j ) as well as global passive space Xb− = ⊕ j Xbj−

η j −r j

(orthogonal sum off all passive spaces Xbj−
η j −r j

). Orthogonal sum of those two spaces

is n-dimensional space Xb
n :

Xb
n = Xb+ ⊕ Xb−. (A12b)

Passive space Xb− is the largest linear space, subspace of the space Xb
n , which

contains only those states which do not interact with the system S a
ρ . On the other

hand, active space Xb+ is the smallest linear space, subspace of the space Xb
n , which

contains all those states that interact with this system. All strongly singular eigenstates
of the combined system are contained in the passive space Xb−.

A.2.2 Weakly singular solutions of Sn+ρ

By definition, each weakly singular eigenstate satisfies
∣∣θaj

〉 	= 0. Further, each such
eigenstate must be orthogonal to all strongly singular eigenstates which span passive
subspace Xbj−

η j −r j
of Xbj

η j . Component
∣∣φbj

〉
of weakly singular eigenstate is hence

contained in the active space Xbj+
r j :

∣∣∣φbj
〉
∈ Xbj+

r j . (A13)

If
∣∣θaj

〉 	= 0 satisfies (A8a), the corresponding state
∣∣φbj

〉 ∈ Xbj+
r j that satisfies this

equation is unique. Assume namely that there are two different states
∣∣∣φbj

1

〉
∈ Xbj+

r j

and
∣∣∣φbj

2

〉
∈ Xbj+

r j which satisfy (A8a) (with the same state
∣∣θaj

〉
). In this case the

state
∣∣φbj

〉 =
∣∣∣φbj

1

〉
−

∣∣∣φbj
2

〉
	= 0 satisfies (A11b) and hence

∣∣φbj
〉 ∈ Xbj−

η j −r j
. Since

Xbj+
r j is a linear space this contradicts the assumption

∣∣∣φbj
1

〉
,

∣∣∣φbj
2

〉
∈ Xbj+

r j . Xb
n-com-

ponent
∣∣�bj

〉
of each weakly singular eigenstate

∣∣� j
〉

is hence uniquely determined
by its Xa

ρ-component
∣∣�aj

〉
. Since Xa

ρ is ρ-dimensional, combined system may have
at most ρ linearly independent weakly singular eigenstates.

Weakly singular eigenstates are very rare. According to (A8b), the state
∣∣θaj

〉 	= 0

is contained in the left nullspace [10] Xaj−
r j ⊆ Xa

ρ of W( j) ≡ VPbj (since Hermi-

tian conjugate of W( j) is Pbj V). Dimension of this nullspace equals rank of W( j),
i.e. it equals r j . On the other hand, according to (A8a) the state H(λ j )

∣∣θaj
〉

is con-

tained in the space Xaj+
ρ−r j

⊆ Xa
ρ . Since the space Xa

ρ is ρ-dimensional and since

W( j) has rank r j , this space has dimension (at most) ρ − r j . Accordingly, the state∣∣θaj
〉 	= 0 has to satisfy simultaneously two conditions:

∣∣θaj
〉 ∈ Xaj−

r j ⊆ Xa
ρ and

H(λ j )
∣∣θaj

〉 ∈ Xaj+
ρ−r j

⊆ Xa
ρ . Since Xa

ρ is ρ-dimension, it is highly unlikely that those
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two conditions will be satisfied in any particular case. In conclusion, combined system
Sn+ρ only exceptionally may contain some weakly singular solutions.

One can distinguish two kinds of weakly singular eigenstates depending on whether
H(λ j )

∣∣θaj
〉 	= 0 or H(λ j )

∣∣θaj
〉 = 0. In the former case weakly singular eigenstate

has a nonvanishing Xb
η j

component
∣∣φbj

〉 	= 0. This component is contained in the

active subspace Xbj+
r j of Xb

η j
. Such weakly singular eigenstate is hence of a general

type (A10) where
∣∣θaj

〉 	= 0 and
∣∣φbj

〉 	= 0. In addition
∣∣φbj

〉
satisfies

∣∣φbj
〉 ∈ Xbj+

r j .
Another possibility is H(λ j )

∣∣θaj
〉 = 0. Each weakly singular eigenstate that satisfies

this condition is an anomal eigenstate. According to (A8), an anomal eigenstate with
the eigenvalue ε = λ j exists if and only if there is a nontrivial state

∣∣θaj
〉 ∈ Xa

ρ that
satisfies

H(λ j )

∣∣∣θaj
〉
= 0, Pbj V

∣∣∣θaj
〉
= 0. (A14)

Since (A8a) implies VPbj
∣∣φbj

〉 = 0 and due to (A13), the state
∣∣φbj

〉
must vanish.

Each anomal eigenstate with the eigenvalue εk ≡ λ j is hence of a general type (A10)
where

∣∣θaj
〉 	= 0 and

∣∣φbj
〉 = 0. This is formally almost identical to a general type

(A6) of cardinal eigenstates.

A.3 Cardinal versus singular solutions of Sn+ρ

There are important qualitative differences between cardinal and singular solutions.
According to (A5a) each cardinal eigenvalue εk /∈ {λi } is at most ρ-degenerate, while
according to (A8) each singular eigenvalue εk ≡ λ j ∈ {λi } is at most (ρ +η j )-degen-
erate. If the degeneracy η j of the unperturbed eigenvalue λ j is large, degeneracy of
the singular eigenvalue εk ≡ λ j may be much bigger than the degeneracy of any
cardinal eigenvalue. In particular, if η j > ρ combined system contains at least η j −ρ

strongly singular eigenstates associated with the eigenvalue εk ≡ λ j . On the other
hand, however large η j , this system may contain at most ρ weakly singular eigenstates
associated with the eigenvalue εk ≡ λ j . As emphasized in a previous section, even
that much is quite unlikely and combined system only exceptionally may contain some
weakly singular eigenstates. In addition, Xa

ρ-component
∣∣�a

k

〉
of cardinal eigenstate

|�k〉 uniquely determines Xb
n-component

∣∣�b
k

〉
of this eigenstate (see A6c). Weakly

singular eigenstates are in that respect similar to cardinal eigenstates. Xa
ρ-component

of each weakly singular eigenstate also uniquely determines the corresponding Xb
n-

component. However, this is not the case with strongly singular eigenstates which
have no Xa

ρ-component.

A.4 Interlacing rule

In addition to the above expressions concerning cardinal and singular solutions, eigen-
values εk of Sn+ρ satisfy the interlacing rule [9].
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Let the unperturbed eigenvalues λi be arranged in the nondecreasing order. Let the
perturbed eigenvalues εk be also arranged in the nondecreasing order. Eigenvalues λi

and εk thus arranged satisfy [9]

εi ≤ λi ≤ εi+ρ, i = 1, . . . , n, (A15a)

In particular

λ1 ≤ ερ+1, εn ≤ λn . (A15b)

Above rule applies to all eigenvalues of the combined system. If the particular
eigenvalue εk is cardinal, corresponding inequality (≤) should be replaced with strict
inequality (<).

B Solution of the infinite combined system S∞

General strategy in the derivation of correct expressions for the description of open sys-
tem S a

ρ that interacts with an infinite system S b
∞ is to approximate infinite combined

system S∞ = S a
ρ ⊕S b

∞ with a finite combined system Sn+ρ = S a
ρ ⊕S b

n that contains
n +ρ eigenvalues and eigenstates. This can be done by replacing infinite-dimensional
system S b

∞ with n-dimensional system S b
n . As n increases, the corresponding finite-

dimensional combined system Sn+ρ should converge to S∞. The solution to this finite
system is given in Sect. A. One now investigates the n → ∞ limit of this solution.
Provided S∞ is approximated by finite systems Sn+ρ in an appropriate way, this limit
is well defined and in this way one derives corresponding expressions for the infinite
combined system S∞ [5–8].

B.1 Isolated solutions of the combined system S∞

Each isolated eigenvalue εr of the combined system S∞ can be contained either in the
range D or in its complement D. In the case of isolated eigenvalues that satisfy εr ∈ D
and which are cardinal (εr /∈ {λ j }), it is relatively easy to obtain the above n → ∞
limit. For example, if the system S b

∞ contains a single one-parameter eigenvalue band
summation over i in (A4b) is replaced with an integral, and one finds

�sp(ε) →
∫ 〈s |V| �(k)〉 〈�(k) |V| p〉

ε − λ(k)
dk =

∫
fsp(λ)

ε − λ
dλ = ωsp(ε), ε ∈ D.

One thus derives expressions (15) [8]. In a similar way one derives those expres-
sions in the general case when S b

∞ contains several multiparameter eigenvalue bands
and/or several isolated eigenstates. This proves expressions (15) which produce all
isolated cardinal solutions of the combined system that satisfy εr ∈ D.

In addition to the isolated solutions in the range D, combined system may contain
some isolated solutions in the complement D of D. Those isolated solutions also sat-
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isfy expressions (15), but in addition eigenstate |θr 〉 of (15a) satisfies (16). One obtains
those solutions as an appropriate limit of embedded solutions [5–8] (see Sect. 6.2.3).

Concerning isolated singular solutions, in analogy to Sect. A.2 one finds that if the
discrete eigenvalue λ j of S b

∞ is highly degenerate, combined system contains a large
number of strongly singular eigenstates

∣∣� j
〉

with the eigenvalue εk ≡ λ j . However,
only exceptionally this system may contain some weakly singular eigenstate with this
eigenvalue (see Sect. A.3).

Consider now the distribution of the isolated eigenvalues εr ∈ D. Let the range D
contain two adjacent disconnected intervals Dµ = [

aµ, bµ

]
and Dν = [aν, bν] where

bµ < aν . Assume further that unperturbed system S b
∞ contains t isolated eigenvalues

in the interval Dµν = [
bµ, aν

]
. In this case interlacing relations (A12) imply that the

combined system S∞ may have at most t + ρ isolated eigenvalues in this interval. In
addition, if t > ρ the combined system has at least t − ρ isolated eigenvalues in this
interval. The same applies to the extreme left and to the extreme right intervals in D.
In conclusion, in each subinterval of D that is limited by adjacent intervals Dµ ⊆ D
and Dν ⊆ D (where in the case of extreme left subinterval its left edge equals −∞,
while in the case of extreme right subinterval its right edge equals +∞) the interaction
of the system S a

ρ with the system S b
∞ may change (decrease or increase) the number

of the initial isolated eigenvalues λi at most by ρ.

B.2 Embedded solutions of the combined system S∞

The case of embedded solutions with eigenvalues ε ∈ D is more complex. Let us first
see how the limit n → ∞ can be obtained in the case when the system S b

∞ contains
a single one-parameter eigenvalue band and no isolated eigenvalues [8].

Case (a) The system S b
∞ contains a single one-parameter eigenvalue band and no

isolated eigenvalues. In this case expressions (2–4) reduce to

B |�(k)〉 = λ(k) |�(k)〉, (B1a)

〈
�(k)|�(k′)

〉 = δ(k − k′), (B1b)

∫
|�(k)〉 〈�(k)| dk = Ib, k, k′ ∈ [ka, kb]. (B1c)

The range D contains a single interval D = [a, b] where a = λ(ka) and b = λ(kb).
Since there is a single one-parameter eigenvalue band and no isolated eigenstates,
expressions (9) that define characteristic operator f(ε) reduce to

fsp(ε) ≡ 〈s|f(ε)|p〉 = 〈s|V|�(k)〉 〈�(k)|V|p〉
dλ(k)/dk

∣∣∣∣
k=λ−1(ε)

·
{

1 if ε ∈ D
0 if ε /∈ D

(B2)

123



688 J Math Chem (2009) 45:627–701

The corresponding derived operator ω(ε) is given in terms of this characteristic
operator according to (13b).

One can now approximate infinite system S∞ by a finite-dimensional system
Sn+ρ = S a

ρ ⊕ S b
n . First, approximate continuous eigenvalue function λ(k) with n

discrete eigenvalues λi = λ(ki ) where ki are equidistant and (in a limit n → ∞)

dense over the interval [ka, kb] :

ki = ka + (i − 0.5) · k, k = (kb − ka)/n, i = 1, . . . , n. (B3a)

Next, approximate continuous matrix elements 〈s |V| �(k)〉 with discrete matrix
elements 〈s |V| �(ki )〉 sampled at n points k = ki . Due to the normalization condition

∫
|�(k)〉 〈�(k)| dk = Ib ⇔

∑

i

|�i 〉 〈�i |

one has

〈s |V| �(k)〉 → 〈s |V| �i 〉 = 〈s |V| �(ki )〉
√

k, i = 1, . . . , n. (B3b)

Above procedure [8] approximates infinite dimensional system S∞ with a finite
dimensional system Sn+ρ . Eigenvalues εk(k = 1, . . . , n + ρ) of this finite system are
interlaced with the unperturbed eigenvalues λi according to (A15a). Expression (A5a)
produces all cardinal solutions of this finite system while expressions (A8) produce all
singular solutions of this system. Next one should investigate n → ∞ limit of those
expressions. Due to the interlacing rule (A15a), in this limit all eigenvalues εk become
dense in the interval [a, b], except possibly at most 2ρ eigenvalues εk which may
escape this interval and which become isolated eigenvalues of the combined system.

Using (B3), matrix elements �sp(εk) of the operator �(εk) can be written as a sum
[8]

�sp(εk) = �(0)
sp (εk) + �(1)

sp (εk), (B4a)

where

�(0)
sp (εk) =

N (n)∑

j=−N (n)

〈
s |V| �(kk+ j )

〉 〈
�(kk+ j ) |V| p

〉

εk − λk+ j
k, (B4b)

�(1)
sp (εk) =

∑

j<−N (n)

〈
s |V| �(kk+ j )

〉 〈
�(kk+ j ) |V| p

〉

εk − λk+ j
k

+
∑

j>N (n)

〈
s |V| �(kk+ j )

〉 〈
�(kk+ j ) |V| p

〉

εk − λk+ j
k. (B4c)

123



J Math Chem (2009) 45:627–701 689

In the above expressions N (n) = ⌊
n1/3

⌋
is the largest integer smaller than n1/3.

With this choice component �
(0)
sp (εk) contains contributions to the matrix element

�sp(εk) from approximately 2n1/3 unperturbed eigenvalues λk+ j that are close to

the perturbed eigenvalue εk , while component �
(1)
sp (εk) contains contributions from

approximately (n − 2n1/3) ≈ n remaining unperturbed eigenvalues λk+ j that are
relatively far from the perturbed eigenvalue εk . Since matrix elements 〈s |V| �(k)〉
are continuous functions of k, in the expression (B4b) one can approximate matrix
elements

〈
s |V| �(kk+ j )

〉
with matrix elements 〈s |V| �(kk)〉 to obtain [8]

�(0)
sp (εk) ≈ 〈s |V| �(kk)〉 〈�(kk) |V| p〉

(dλ/dk)k

N (n)∑

j=−N (n)

1

x(εk) − j
.

where

x(εk) = εk − λk−1

λk − λk−1
, k = ρ + 1, ρ + 2, . . . , n. (B5a)

With the identity [15]

1

x
+

∞∑

j=1

(
1

x − j
+ 1

x + j

)
= π cot(πx).

One finds [8]

�(0)
sp (εk) ≈ π

〈s |V| �(kk)〉 〈�(kk) |V| p〉
(dλ/dk)k

cot (πx(εk)). (B5b)

In this last step it is crucial that matrix elements
〈
s |V| �(kk+ j )

〉
smoothly change as

index j continuously increases. This property follows from the fact that 〈s |V| �(k)〉
is a smooth function of k. Without this property transition from (B4b) to (B5b) is not
possible [8].

Each x(εk) is a fractional shift of the perturbed eigenvalue εk relative to the unper-
turbed eigenvalue λk−1 [5–8]. In the limit n → ∞ discrete quantities x(εk) converge
to a continuous function x(ε) of a continuous parameter ε ∈ D. As n increases,
approximation (B5b) improves and in a limit n → ∞ it is exact [5,8]. One thus finds

�(0)
sp (εk) → π fsp(ε) cot (πx(ε)), ε ∈ D. (B6a)

where matrix elements fsp(ε) are given by (B2). In a similar way one finds that in this

limit component �
(1)
sp (εk) should be replaced according to [5,8]

�(1)
sp (εk) → P

∫ 〈s |V| �(k)〉 〈�(k) |V| p〉
ε − λ(k)

dk = P
∫

fsp(λ)

ε − λ
dλ

= ωsp(ε), ε ∈ D, (B6b)
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where P denotes principal Cauchy integral value [11]. Inserting expressions (B6)
into (A5a) one derives fractional shift eigenvalue equation (22). In a similar way one
derives expression (24a) [8].

Note the difference between fractional shift eigenvalue equation (22) that applies
to an infinite combined system S∞ and eigenvalue equation (A5a) that applies to a
finite combined system Sn+ρ . Solutions to (A5a) are eigenvalues εk and the corre-
sponding eigenstates |θk〉. As n increases eigenvalues εk (k = ρ + 1, . . . , n) become
dense in the range D, and in a limit n → ∞ each ε ∈ D becomes an eigenvalue of the
combined system. There is hence no information content in the particular eigenvalue
ε ∈ D. According to (22), this information about eigenvalues is replaced with the
information about the fractional shift x(ε). For almost each ε ∈ D this quantity is
well defined and it contains a nontrivial information about the embedded eigenstates
of the combined system.

Above derivation of expressions (22) and (24) involves some assumptions which
are not always satisfied [5–8]. More detailed analyze shows that those expressions are
valid for each ε ∈ D, except for the anomal points εa ∈ D where the combined system
may contain isolated eigenstates. By definition, εa ∈ D is an anomal point if there is
a nontrivial state |ϕ〉 that satisfies f(εa) |ϕ〉 = 0 as well as h(εa) |ϕ〉 = 0 [8]. If this
is the case, any value of X (ε) is formally an eigenvalue of a fractional shift equation
(22a).

Since the unperturbed system S b
∞ contains a single one-parameter eigenvalue band,

rank of the characteristic operator f(ε) in the range D ≡ [a, b] is one, with a possible
exception of few isolated points where this rank vanishes [8]. As a consequence, if
h(ε) is regular in a point ε ∈ D and if f(ε) has rank one, fractional shift eigenvalue
equation (22a) has exactly one eigenstate |ϕ(ε)〉 and one corresponding eigenvalue
X (ε). The same is true if h(ε) is singular in some point ε = ε0 ∈ D, provided no
eigenstate of h(ε0) satisfies at the same time h(ε0) |ϕ(ε0)〉 = 0 and f(ε0) |ϕ(ε0)〉 = 0,
i.e. provided ε = ε0 ∈ D is not an anomal point [8].

Above approach produces all embedded cardinal solutions of the combined sys-
tem. In a similar way one finds embedded singular solutions of this system. First,
one has to approximate infinite combined system S∞ with a finite dimensional sys-
tem Sn+ρ = S a

ρ ⊕ S b
n . Instead of expression (A5a), one has now expressions (A8).

According to the definition (A4b), from the summation that determines matrix ele-
ments �sp(εk) (εk ≡ λ j ) one has to exclude all terms that satisfy λi = λ j . One finds

that in a limit n → ∞ component �
(0)
sp (εk) of �sp(εk) vanishes. Hence in this limit

�sp(εk) → ωsp(ε) where ωsp(ε) is given by (B6b). One thus derives expressions (19)
where Pε is a projection on a subspace Xbε associated with the unperturbed eigenvalue
λ = ε. Since Xb∞ contains a single one-parameter eigenvalue band, this projection
operator equals

Pε = |�(k)〉 〈�(k)| , k = λ−1(ε). (B7)

In the case of finite combined system Sn+ρ singular solutions satisfy expressions
(A8). Since each λ(k) is nondegenerate, conditions (A11c) for the existence of strongly
singular eigenstates reduce to 〈s |V| �(ki )〉 = 0 (s = 1, . . . , ρ). If V is nontrivial, this
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condition is very unlikely to be satisfied. According to the discussion in Sect. A.1.1.,
the same applies to the weakly singular solutions. As a result, combined system Sn+ρ

may have only a small number of singular solutions, however large n. In a limit n → ∞
the number of those solutions is negligible in comparison to the number of cardinal
solutions (which are in this limit infinite in number).

One derives the same conclusion directly using expressions (19) where Pε is given
by (B7). Since S b

∞ contains a single one-parameter eigenvalue band, solutions of those
expressions are of a general type |ϕ(ε)〉 ∈ Xa

ρ and |φ(ε)〉 ∈ Xb∞ with a single parameter
ε ∈ D and no additional parameters. In the case of strongly singular solutions that sat-
isfy |ϕ(ε)〉 = 0, those expressions reduce to VPε |φ(ε)〉 = 0. Since each unperturbed
eigenvalue |�(k)〉 is nondegenerate this implies 〈s |V| �(k)〉 = 0 (s = 1, . . . , ρ)

where k = λ−1(ε). This requirement is equivalent to f(ε) = 0. Characteristic opera-
tor f(ε) can vanish only in some isolated points εc ∈ D and the number of strongly
singular solutions is hence very limited. This number is negligible in comparison to
the (c-infinite) number of cardinal solutions. Concerning weakly singular solutions,
those solutions satisfy |ϕ(ε)〉 	= 0. Both conditions in (19) are hence nontrivial. In
analogy to a finite case one again finds that combined system only exceptionally may
contain some embedded weakly singular solutions. In particular, those solutions can
exist only in some isolated points ε0 ∈ D.

Our task here is to generalize the validity of the expressions (19), (22) and (24)
from the above case when the system S b

∞ contains a single one-parameter eigenvalue
band to the general case when this system is described by the expressions (2) and (3).
This will be done in few steps. Only most important points of this generalization will
be given.

Case (b) The system S b
∞ contains a single eigenvalue band with a continuous

parameter k and with an additional parameter m that may have η ≤ ρ discrete values
1, . . . , η. In this case expressions (B1) generalize to

B |�m(k)〉 = λ(k) |�m(k)〉, (B8a)

〈
�m(k)|�m′(k′)

〉 = δmm′δ(k − k′), (B8b)

η∑

m

∫
|�m(k)〉 〈�m(k)| dk = Ib, k ∈ [kakb] , m, m′ = 1, . . . , η. (B8c)

Range D again contains a single interval D = [a, b] where a = λ(ka) and b =
λ(kb). Characteristic operator f(ε) has matrix elements

fsp(ε) ≡ 〈s |f(ε)| p〉 =
∑η

m 〈s |V| �m(k)〉 〈�m(k) |V| p〉
dλ(k)/dk

∣∣∣∣
k=λ−1(ε)

·
{

1 if ε ∈ D
0 if ε /∈ D

(B9)
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Most important difference between this case and previous case is that in a previous
case rank of matrix f(ε) could be at most one, while in the present case this rank can
be as large as η. In order to show this, write matrix elements fsp(ε) in a form

fsp(ε) =
η∑

m

asm(ε)a∗
pm(ε)

where

asm(ε) = 〈s |V| �m(k)〉√
dλ(k)/dk

∣∣∣∣
k=λ−1(ε)

Consider η column vectors Vm(ε) = (a1m(ε), a2m(ε), . . . , aρm(ε))T (m=1, . . . , η)

where T denotes vector transpose. Each Vm(ε) is a ρ-dimensional column vector. Let
Cl(ε) be l-th column of a matrix f(ε). This column can be written as a linear combi-
nation

Cl(ε) =
η∑

m

a∗
lm(ε)

(
a1m(ε), a2m(ε), . . . , aρm(ε)

)T ≡
η∑

m

a∗
lm(ε)Vm(ε)

Each column of f(ε) is a linear combination of η vectors Vm(ε) and hence f(ε) has
at most η linearly independent columns. This proves that the rank of f(ε) is at most η.
Depending on linear dependence or independence of column vectors Vm(ε), this rank
can assume any value smaller or equal to η. In conclusion, one has rank(f(ε)) ≤ η.
In particular, if the system S b

∞ contains a single one-parameter eigenvalue band (the
case a) above, one has rank(f(ε)) ≤ 1.

One can now proceed in analogy to the case (a). First, approximate continuous
eigenvalue function λ(k) with n discrete eigenvalues λi = λ(ki ) where ki are given
by (B3a). Concerning matrix elements 〈s |V| �m(k)〉 one has

η∑

m

∫
|�m(k)〉 〈�m(k)| dk = Ib ⇔

∑

i

|�i 〉 〈�i |.

Those matrix elements should be sampled at n discrete points k = ki in such a way
that in a limit n → ∞ for each m = 1, . . . , η one has dense sampling over entire
range D. This can be done according to

〈s |V| �m(k)〉 → 〈s |V| �i 〉 = 〈
s |V| �i mod η(ki )

〉√
k, i = 1, . . . , n, (B10)

where i mod η is i modulo η. For each s = 1, . . . , ρ the sequence
〈
s |V| �i mod η(ki )

〉

(i = 1, . . . , n) contains η subsequences. First of those subsequences contains matrix
elements:

〈
s |V| �1(k1+ jη)

〉
( j = 1, 2, . . .), second of those subsequences contains

matrix elements
〈
s |V| �2(k2+ jη)

〉
( j = 1, 2, . . .), etc. In a limit n → ∞ each of those

subsequences is a smooth function of a parameter k. This property is the main reason
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for the particular sampling method (B10). Matrix elements �sp(εk)of the operator
�sp(εk) can be now written as a sum (B4a) where

�(0)
sp (εk) =

N (n)∑

j=−N (n)

〈
s |V| �(k+ j) mod η(kk+ j )

〉 〈
�(k+ j) mod η(kk+ j ) |V| p

〉

εk − λk+ j
k,

�(1)
sp (εk) =

∑

j<−N (n)

〈
s |V| �(k+ j) mod η(kk+ j )

〉 〈
�(k+ j) mod η(kk+ j ) |V| p

〉

εk − λk+ j
k

+
∑

j>N (n)

〈
s |V| �(k+ j) mod η(kk+ j )

〉 〈
�(k+ j) mod η(kk+ j ) |V| p

〉

εk − λk+ j
k

Due to the smoothness property of each subsequences of the sequence (B10), one
can in analogy to (B5b) approximate component �

(0)
sp (εk) as

�(0)
sp (εk) ≈ π

d∑

m
〈s |V| �m(kk)〉 〈�m(kk) |V| p〉

(dλ/dk)k
cot (πx(εk)).

In a limit n → ∞ one derives (B6a) where matrix elements fsp(ε) are given by (B9).

In a similar way one finds that in this limit component �
(1)
sp (εk) should be replaced

according to

�(1)
sp (εk) → P

∫
η∑

m
〈s |V| �m(k)〉 〈�m(k) |V| p〉

ε − λ(k)
dk = P

∫
fsp(λ)

ε − λ
dλ

= ωsp(ε), ε ∈ D.

Inserting into (A5a) one again derives fractional shift eigenvalue equation (22). In
a similar way one derives expression (24a).

There is an important new feature in this case. As emphasized above, for each ε ∈ D
rank of the characteristic operator f(ε) can be as large as η. Hence for each ε ∈ D
fractional shift eigenvalue equation (22a) may have as many as η eigenstates |ϕd(ε)〉
and η eigenvalues Xd(ε), i.e. η corresponding fractional shifts xd(ε). In particular,
if h(ε) is regular in a point ε ∈ D, fractional shift eigenvalue equation has exactly
r(ε) = rank (f(ε)) solutions in this point.

Case (c) This case is a generalization of a previous case to the case when η can
assume any value, including the possibility η = ∞. In this case the system S b

∞ is
again described by expressions (B8), but without the restriction η ≤ ρ.

For each ε ∈ D the corresponding η-dimensional space Xbε
η is spanned by orthon-

ormalized base B(ε) ≡ {|�m(k)〉 : k = λ−1(ε); m = 1, . . . , η
}
. Instead of this base,

consider interaction adopted base B∗(ε) ≡ {∣∣�∗
m(k)

〉 : k = λ−1(ε); m = 1, . . . , η
}

that has the following property: first r(ε) ≤ η vectors of this base form a base B+(ε) ≡{∣∣�∗
m(k)

〉 : k = λ−1(ε); m = 1, . . . , r(ε)
}

of the active subspace Xbε+
r(ε) of the space
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Xbε
η . Each vector in Xbε+

r(ε) interacts with the space Xa
ρ . In general, dimension r(ε) of

Xbε+
r(ε) may depend on ε, but it can not exceed dimension ρ of the space Xa

ρ . Remaining

η − r(ε) vectors form a base B−(ε) ≡ {∣∣�∗
m(k)

〉 : k = λ−1(ε); m = r(ε) + 1, . . . , η
}

of the passive subspace Xbε−
η−r(ε) of the space Xbε

η . No vector in Xbε−
η−r(ε) interacts with

the space Xa
ρ . Accordingly, all those vectors are strongly singular eigenstates of the

combined system.
Cardinal solutions of the combined system can be now obtained in the same way

as in the previous case, with the only difference that all relations should be expressed
in the active base B+(ε), that is in terms of active vectors

∣∣�∗
m(k)

〉
instead of in terms

of initial vectors |�m(k)〉. However, since

Pε ≡
η∑

m

|�m(k)〉 〈�m(k)| ≡
η∑

m

∣∣�∗
m(k)

〉 〈
�∗

m(k)
∣∣ , k = λ−1(ε).

one can again express all those relations in the old base. For example, due to this
identity one has

η∑

m

〈
s |V| �∗

m(k)
〉 〈

�∗
m(k) |V| p

〉

dλ(k)/dk

∣∣∣∣∣∣∣∣
ε=λ(k)

=

η∑

m
〈s |V| �m(k)〉 〈�m(k) |V| p〉

dλ(k)/dk

∣∣∣∣∣∣∣∣
ε=λ(k)

= fsp(ε)

which proves (B9). In this way one again derives expressions (22) and (24) for the car-
dinal solutions of the combined system S∞. One similarly derives expressions (19) for
the singular solutions of this system. Unlike in the case (a) above, in this more general
case combined system may contain a huge number of singular solutions. In particular,
each strongly singular eigenstate that has eigenvalue ε is a linear combination

|φ(k)〉 =
η∑

m

cm |�m(k)〉, k = λ−1(ε),

where coefficients cm satisfy

η∑

m

cm 〈s |V| �m(k)〉 = 0, s = 1, . . . , ρ.

If η > ρ, for each ε ∈ D one has at least (η − ρ) such eigenstates. All those
eigenstates are contained in the passive subspace Xbε−

η−r(ε) of the space Xbε
η . If η is

large the number of such strongly singular eigenstates can be substantial. Concerning
weakly singular eigenstates, one again finds that the combined system may contain
only a limited number of such eigenstates.
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Case (d) The system S b
∞ contains a single eigenvalue band with the parameter k

and with an additional continuous parameter l. In this case expressions (B1) generalize
to

B |�(k, l)〉 = λ(k) |�(k, l)〉, (B11a)

〈
�(k, l)

∣∣�(k′, l ′)
〉 = δ(k − k′)δ(l − l ′), (B11b)

∫
|�(k, l)〉 〈�(k, l)| dkdl = Ib, k ∈ [ka, kb]. (B11c)

In general, parameter l can assume each value in some interval L(ε), where this
interval may depend on ε = λ(k). Range D again contains a single interval D = [a, b],
where a = λ(ka) and b = λ(kb). Characteristic operator f(ε) has matrix elements

fsp(ε) ≡ 〈s |f(ε)| p〉 =
∫ 〈s |V| �(k, l)〉 〈�(k, l) |V| p〉 dl

dλ(k)/dk

∣∣∣∣
k=λ−1(ε)

·
{

1 if ε ∈ D
0 if ε /∈ D

This case is similar to the previous one. The only difference is that the discrete
parameter m is replaced with continuous parameter l. As a consequence, for each
ε ∈ D one has a base B(ε) ≡ {|�(k, l)〉 : k = λ−1(ε); l ∈ L(ε)

}
. Since l is continu-

ous, the corresponding space Xbε∞ spanned by this base is infinite-dimensional. One
can again consider active and passive subspaces of the space Xbε∞. In the same way as in
the previous case one finds that the dimension r(ε) of the active subspace Xbε+

r(ε) of the

∞-dimensional space Xbε∞ is finite and at most ρ. On the other hand, passive subspace
Xbε−∞ of Xbε∞ is infinite-dimensional. Using active base one again derives expressions
(22) and (24). Concerning passive base, the corresponding space Xbε−∞ contains all
strongly singular eigenstates of the combined system that have eigenvalue ε.

Above results can be easily generalized to the case when the system S b
∞ contains a

single multiparameter eigenvalue band that may depend on several discrete parameters
m as well as on several continuous parameters l.

Case (e) System S b
∞ contains several eigenvalue bands.

In this case system S b
∞ is described by expressions (2a) and (2b). The only restric-

tion on the generality of those expressions is that this system contains no isolated
eigenvalues and eigenstates.

If no two bands overlap, generalization from a previous case to this case is rather
straightforward. Since intervals Iν are mutually disjunct, one can treat each such inter-
val in the same way as in the previous case when the system S b

∞ contains a single
eigenvalue band [6,7]. Characteristic function f(ε) is just a sum of band characteristic
functions fν(ε), and one again derives expressions (19), (22) and (24).

Slightly more complex is the case when some bands overlap. The main strategy in
this case is described elsewhere [6,7]. Consider the simplest case when the system
S b

∞ contains two bands ν and µ that partially or completely overlap. With the band
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ν is associated eigenvalue function λν(k) where k ∈ [kaν, kbν] and with the band µ

is associated eigenvalue function λµ(k) where k ∈ [
kaµ, kbµ

]
. All eigenvalues of the

first band are contained in the interval Iν = [λν(kaν), λν(kbν)] while all eigenvalues
of the second band are contained in the interval Iµ = [

λµ(kaµ), λµ(kbµ)
]
. Consider

the interval Iµν = Iν ∪ Iµ. In general, this interval is a union of three subintervals
of which only the subinterval I = Iµ ∩ Iν which is the intersection of Iµ and Iν
contains elements of both bands. Hence those two overlapping eigenvalue bands can
be formally treated as three eigenvalue bands of which only eigenvalue band cor-
responding to the intersection interval I requires some special treatment. With an
appropriate rescaling of eigenvalue functions λν(k) and λµ(k) within this interval one
can transform both eigenvalue functions to the same eigenvalue function λ(k) [6]. The
interval I can be hence treated as if it contains a single (multiparameter) eigenvalue
band. The problem of overlapping bands is thus reduced to the previous problem of
nonoverlapping bands and following this prescription one again derives expressions
(22) and (24).

Case (f) General case. System S b
∞ is an arbitrary infinite-dimensional system con-

taining several multiparameter eigenvalue bands and several isolated eigenstates.
After previous case is solved, one has only to add several isolated eigenstates to S b

∞.
The entire derivation of expressions (22) and (24) is the same, except for the redefini-
tion of characteristic operator f(ε) which is now defined in slightly more general way
in order to include the effect of those additional isolated eigenstates.

The same applies to expressions (19) which describe embedded singular eigen-
states. In particular one finds that (depending on the system S b

∞) for each ε ∈ D
combined system may contain a huge number of embedded strongly singular eigen-
states. All those eigenstates are contained in the passive subspace Xbε− of the space
Xbε. Since those eigenstates do not have Xa

ρ-component, they do not contribute to
the properties of the open system S a

ρ . Concerning embedded weakly singular eigen-
states, the number of those eigenstates is limited. First note that for each ε ∈ D one
may have at most ρ such eigenstates, however large dimension of the space Xbε.
Next, since those eigenstates satisfy |ϕ(ε, . . .)〉 	= 0 and |φ(ε, . . .)〉 ∈ Xbε+, one
finds that conditions (19) can be satisfied only for some isolated points ε0 ∈ D. As
a result those eigenstates do not contribute to the properties of the open system S a

ρ

(excluding anomal eigenstates which are however isolated and not embedded eigen-
states).

C Derivation of completeness relations (34)

Let {|�r 〉} be the set of all isolated eigenstates of S∞, let {|�d(ε)〉} be the set of all
embedded cardinal eigenstates of S∞ and let {|�(ε, . . .)〉} be the set of all embedded
singular eigenstates of S∞. Those eigenstates form a complete set in X∞ and hence

∑

r

|�r 〉 〈�r | S +
∑

d

∫
|�d(ε)〉 〈�d(ε)| Sdε

+
∑

(...)

∫
|�(ε, . . .)〉 〈�(ε, . . .)| Sdε = I, (C1a)
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where I = Ia + Ib is a unit operator in X∞. First term involves summation over
all isolated eigenstates |�r 〉 of the combined system, second term involves integra-
tion of all embedded cardinal eigenstates |�d(ε)〉 over ε ∈ D and summation over
all such eigenstates, while third term involves integration of all embedded singular
eigenstates |�(ε, . . .)〉 over ε ∈ D as well as summation and integration over all
additional parameters, if any. Multiply expression (C1a) from the right by projection
operator Ia . Since strongly singular eigenstates have no Xa

ρ-component, as a result
all such eigenstates contained in the third term of (C1a) vanish. Concerning weakly
singular eigenstates, those eigenstates have nonvanishing Xa

ρ-component. However,
weakly singular eigenstates that correspond to anomal points are not embedded but
rather isolated eigenstates. Those eigenstates are taken care in the first term of the
above expression. Remaining embedded weakly singular eigenstates can exist only in
some isolated points ε = ε0 ∈ D. Hence the integration over ε in the above third term
produces zero. Thus one finds

∑

r

|�r 〉
〈
�a

r

∣∣Sa +
∑

d

∫
|�d(ε)〉 〈�a

d (ε)
∣∣Sadε = Ia,

Multiplying from left by Ia this implies:

∑

r

∣∣�a
r

〉 〈
�a

r

∣∣Sa +
∑

d

∫ ∣∣�a
d (ε)

〉 〈
�a

d (ε)
∣∣ Sadε = Ia . (C1b)

Let |�〉 ∈ Xa
ρ be an arbitrary state contained in the space Xa

ρ and let this state be
normalized according to 〈� |Sa | �〉 = 1. In this case

∑

r

〈
�

∣∣Sa
∣∣�a

r

〉 〈
�a

r

∣∣Sa
∣∣�

〉 +
∑

d

∫ 〈
�

∣∣Sa
∣∣�a

d (ε)
〉 〈

�a
d (ε)

∣∣Sa
∣∣�

〉
dε = 1. (C1c)

In particular, one can choose |�〉 to be a local state |�s〉:
∑

r

〈
�s

∣∣Sa
∣∣�a

r

〉 〈
�a

r

∣∣Sa
∣∣�s

〉 +
∑

d

∫ 〈
�s

∣∣Sa
∣∣�a

d (ε)
〉 〈

�a
d (ε)

∣∣Sa
∣∣�s

〉
dε = 1,

(C2a)

Physically,
〈
�s |Sa | �a

r

〉 〈
�a

r |Sa | �s
〉 ≡ |〈�s |S| �r 〉|2 = wr,s is a probability to

find isolated eigenstate |�r 〉 of a combined system in a local state |�s〉. Similarly,〈
�s |Sa | �a

d (ε)
〉 〈

�a
d (ε) |Sa | �s

〉 ≡ |〈�s |S| �d(ε)〉|2 = ρd,s(ε) is a probability den-
sity to find embedded cardinal eigenstate |�d(ε)〉 of a combined system in a local state
|�s〉. In view of (27), this proves (34a). Summing over s and using (1c) one finds

∑

r

〈
�a

r

∣∣Sa
∣∣�a

r

〉 +
∑

d

∫ 〈
�a

d (ε)
∣∣Sa

∣∣�a
d (ε)

〉
dε = ρ, (C2b)

which proves (34b).

123



698 J Math Chem (2009) 45:627–701

D Derivation of the expression (11)

Consider integral

K (ε) ≡ P
∫ b

a

f (λ)

ε − λ
dλ.

where P denotes principal integral value. This integral is defined as a limit

K (ε) ≡ lim
h→0

{∫ ε−h

a

f (λ)

ε − λ
dλ +

∫ b

ε+h

f (λ)

ε − λ
dλ

}
.

Expanding f (λ) in the point ε = λ and inserting this expansion in the above
expression one finds

K (ε) = − lim
h→0

{∫ ε−h

a

∞∑

i=0

f (i)(ε)

i ! (λ − ε)i−1 dλ +
∫ b

ε+h

∞∑

i=0

f (i)(ε)

i ! (λ − ε)i−1 dλ

}

= − lim
h→0

{
f (ε)

[∫ ε−h

a

dλ

λ − ε
+

∫ b

ε+h

dλ

λ − ε

]

+
∞∑

i=1

f (i)(ε)

i !i (λ − ε)i

∣∣∣∣∣

ε−h

a

+
∞∑

i=1

f (i)(ε)

i !i (λ − ε)i

∣∣∣∣∣

b

ε+h

⎫
⎬

⎭

= f (ε) ln

∣∣∣∣
a − ε

b − ε

∣∣∣∣ −
∞∑

i=1

f (i)(ε)

i !i
[
(b − ε)i − (a − ε)i

]

This proves expressions (11).

E Expressions (17), (30) and (31)

Consider generic eigenvalue equation (15a). If one increases β by an infinitesimal
amount dβ, eigenvalue εr increases by dεr , while eigenstate |θr 〉 changes to |θr + δθr 〉 :

[
(β + dβ)2 ω(εr + dεr ) + A − (εr + dεr )Sa

]
|θr + δθr 〉 = 0.

Since dβ is infinitesimal this implies:

[(
β2 + 2β dβ

)(
ω(εr ) + dω

dεr
dεr

)
+ A − (εr + dεr )Sa

]
|θr + δθr 〉 = 0.

Multiplying from left by 〈θr | and using (15a) one finds

dεr

〈
θr

∣∣∣∣β
2 dω

dεr
− Sa

∣∣∣∣ θr + δθr

〉
+ 2β dβ 〈θr |ω(εr )| θr + δθr 〉 = 0.
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Since |δθr 〉 is infinitesimal this implies (17).

Expression (30)

Consider fractional shift eigenvalue equation (22a). Increase ε by an infinitesimal
amount dε to obtain

[
β2ω(ε + dε) + A − (ε + dε)Sa

]
|ϕd(ε + dε, β)〉 = Xd(ε + dε, β)f(ε + dε)

|ϕd(ε + dε, β)〉

For clarity, in the above and in the following expressions is explicitly emphasized
the dependence of the eigenstate |ϕd(ε)〉 ≡ |ϕd(ε, β)〉 and of the corresponding eigen-
value Xd(ε) ≡ Xd(ε, β) on the coupling parameter β.

If f(ε) is analytic in the point ε ∈ D, ω(ε) is also analytic in this point. If in
addition Xd(ε, β) is nondegenerate, one finds that |ϕd(ε, β)〉 and Xd(β, ε) are also
analytic in this point. One can hence expand those quantities in the point ε ∈ D to
obtain

[
β2

(
ω(ε) + dω

dε
dε

)
+ A − (ε + dε)Sa

]
|ϕd(ε + dε, β)〉

=
(

Xd(ε, β) + ∂ Xd

∂ε
dε

)(
f(ε) + df

dε
dε

)
|ϕd(ε + dε, β)〉

Multiplying from left by 〈ϕd(ε, β)| using (22a) and neglecting higher order terms
one finds

〈
ϕd(ε, β)

∣∣∣∣

[
β2 dω

dε
− Sa

]∣∣∣∣ϕd(ε, β)

〉
= Xd(ε, β)

〈
ϕd(ε, β)

∣∣∣∣
df
dε

∣∣∣∣ϕd(ε, β)

〉

+∂ Xd

∂ε
〈ϕd(ε, β)| f(ε) |ϕd(ε, β)〉

This implies expression (30).

Expression (31) and anomal points

Let the unperturbed eigenvalue Es be contained in the range D(Es ∈ D) and let this
eigenvalue be nondegenerate. In this case there is one and only one eigenvalue εs ≡
εs(β) of a generic eigenvalue equation (15a) such that εs(0)= Es . Let the correspond-
ing eigenstate |θs(β)〉 satisfy f(Es) |θs(0)〉 ≡ f(Es) |�s〉 	= 0. As emphasized in
Sect. 6.2, there is an embedded eigenstate |ϕs(ε, β)〉 of the fractional shift eigenvalue
equation such that Xs(εs(β), β)= 0 and (up to the norm and phase) |ϕs(εs(β), β)〉 =
|θs(β)〉. Note that fractional shift corresponding to the eigenvalue Xs(εs(β), β) = 0
equals xs(εs(β), β)= 0.5. This fractional shift describes embedded eigenstate with
the eigenvalue ε which is exactly in the middle between two adjacent infinitesimally
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close unperturbed eigenvalues λ. If f(ε) is smooth in a point ε = Es ∈ D and in some
small neighborhood of this point, one has

f(ε) ≈ f(εs), |ϕs(ε, β)〉 ≈ |ϕs(εs(β), β)〉 ∝ |θs(β)〉,
Xs(ε, β) ≈ (∂ Xs(εr , β)/∂εr ) (ε − εs(β))).

Above approximations are reliable if |ε − εs(β)| is sufficiently small, i.e. if ε ∈
(εs) where (εs) is some small neighborhood of the point εs(β). For each β those
expressions are exact in a point ε = εs(β). Hence, provided ε ∈ (εs), one can
approximate (24b) as (31). If the width εs(β) of the corresponding universal res-
onance curve as calculated by (33a) is as small as εs(β) < (εs), component∣∣�a

s (ε, β)
〉

of the embedded eigenstate |�s(ε, β)〉 displays a prominent resonance
feature at the resonant point ε = εs(β). Since εs(β) is proportional to the square
of the interaction parameter β, this condition is satisfied if β is sufficiently small.
This justifies approximation (31) in the case of small β. However, in some cases
εs(β) may be small even when β is not small. In particular, if matrix element
〈θs(β) |f(εs(β))| θs(β)〉 is sufficiently small, εs(β) may be small even for large β.
One has such an extreme case in the anomal point (β = βa, ε = εs(βa) ≡ εa) where
〈θs(βa) |f(εa)| θs(βa)〉 = 0. One can not directly analyze such a point, since in this
point the method by which fractional shift equation was derived as the n → ∞ limit of
expressions (A5a) breaks [8]. However one can analyze this point as the limit β → βa .
In this limit 〈θs(β) |f(εs(β))| θs(β)〉 → 0. If Xs(εa, βa) is nondegenerate, as long as
〈θs(β) |f(εs(β))| θs(β)〉 	= 0, however small, one has at the point ε = εs(β) reso-
nant structure described by universal resonance curve (32b). In a limit β → βa this
curve becomes infinitely narrow and infinitely high with the exact area (33c). This
is a δ-function w0

s (βa)δ (ε − εa). Accordingly, in this limit (β → βa) one has an
isolated eigenstate at the anomal point ε = εa . More rigorous treatment shows that in
an anomal point combined system may have one or several isolated eigenstates [8]. In
particular, one finds that in a point β = βa, Xa

ρ-component
∣∣�a

r

〉
of the corresponding

isolated solutions is given by expressions (15b) and (15c). This is implied by formal
equality of probabilities (18b) and (33c).
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